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As is known, the quadratic conditions for a local minimum in problems of the classical

calculus of variations (and also in certain optimal control problems) lead to the study of

definiteness of an integral quadratic functional, and the main assumption in this study is the

strengthened Legendre condition.

The case where the Legendre condition degenerates at least at one point has been studied

much less (note here [4, 8, 1]). Meanwhile, it is of interest both from the theory of quadratic

forms themselves and because it can be well realized in particular variational problems. If

we restrict ourselves to the degeneration of the Legendre condition at a single point, then the

first interesting and nontrivial functional has the following form:

(1) J =

1∫

0

(
t2(u, u)− 2bt(Px, u) + (Dx, x)

)
dt,

where

(2) ẋ = u, x(1) = 0.

Here, x and u are two-dimensional, P is the matrix of rotation by 90◦, b ∈ R is an

arbitrary parameter, and D is a constant symmetric matrix. The function u(t) is assumed

to belong to L∞[0, 1] for a while, i.e., x(t) is Lipschitzian (we have chosen the minus sign

for the middle term of (1) for the convenience of further formulas).

The form of this functional is obtained from the following considerations: if for some

functional with the term (R(t)u, u), the Legendre condition is fulfilled, i.e., if R(t) ≥ 0, but

it degenerates at a single point t0, then a typical degeneration has the form R = (t− t0)2.

The coefficient of (Px, u) also must degenerate at t0 (otherwise, this term becomes leading,

and J has negative values in advance); moreover, this degeneration must be of first order

(if the degeneration is higher, the mixed term is smaller in order than both extreme terms).

It is natural to begin the study of this functional with variations of x(t) concentrated in a

neighborhood of this point, i.e., under the conditions x(t0 − ε) = x(t0 + ε) = 0, and then,

restricting ourselves (due to symmetry) to the consideration of the half-interval [t0, t0 + ε],

we arrive at the form (1), (2).

We call attention to the fact that functional (1) has the self-similarity property (or, as

one can also say, the “fractality” property): its nonnegativity does not depend on the closed
1
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interval [0, T ] on which it is considered (under the condition x(T ) = 0 on its right end

point); therefore, we set T = 1.

We pose the following question: for which parameters b and D is the functional J

nonnegative on the above set of functions? (Then, obviously, it will also be nonnegative

on its natural closure, whose description will be given below.) We cannot directly apply

the classical Jacobi condition because the strengthened Legendre condition is not fulfilled (it

degenerates at the point t = 0 ).

1. We first establish that the left end of x(t) can also be assumed to be zero.

Lemma 1. The property J(x) ≥ 0 for all Lipschitzian x(t) with the boundary condition

x(1) = 0 is equivalent to the property J(x) ≥ 0 for all Lipschitzian x(t) with the boundary

conditions x(0) = x(1) = 0.

Proof. It suffices to prove that if J(x̂) < 0 for a certain Lipschtzian x̂ with the condition

x̂(1) = 0 , then there exists a Lipschitzian x with the condition x(0) = x(1) = 0 for which

J(x) < 0 as well.

Without loss of generality, we can assume that x̂ = const, i.e., û = 0 on the closed

interval [0, ∆] for a certain ∆ > 0 (since the set of such u is everywhere dense in L∞[0, 1]

with respect to any integral metric). Take any ε < ∆ and construct a function x(t)

which linearly grows from 0 up to x̂(ε) on [0, ε] and then coincides with x̂(t). Thus, the

constructed x and u differ from the initial x̂ and û only on the interval [0, ε] on which

|u(t)| ' 1/ε (a quantity of order 1/ε ), and, therefore, |tu| ≤ const and also t2 |u|2 ≤ const .

Therefore, |J(x) − J(x̂)| ≤ const ·ε, and then, for a small ε , we obtain J(x) < 0 ; this is

what was required to be proved. ¤

In principle, this lemma makes it possible to apply the Jacobi conditions, since we now

can assume that x(0) = 0, and then, according to the general idea of these conditions, we

can move the left end-point of this closed interval. For θ > 0 , the strengthened Legendre

condition is fulfilled on each closed interval [θ, 1] , and, therefore, we can seek out a point

t∗ conjugate to the point t = 1. If there is no such point on the interval (0,1), then for

any θ > 0 , the functional J ≥ 0 on [θ, 1], and then, by continuity, J ≥ 0 on [0, 1] as

well. (The same procedure can also be performed for the free x(0), without using Lemma 1,

but in this case, in considering J on [0, 1] , we need to add to it the integrated term

(Dx(θ), x(θ)) · θ corresponding to the integral over [0, θ] , and then the coefficients of the

functional are no longer constant.)

But we proceed in another way. Taking an arbitrary constant symmetric matrix S, we

add the expression

− d

dt
[t(Sx, x)] = −2t(Sx, u)− (Sx, x)
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under the integral sign in (1); obviously, this expression does not change the value of the

functional (since the integral of it is (t(Sx, x))|T0 = 0). Then the integrand becomes

[tu− (S + bP )x]2 + (Mx, x),

where

M = D − S − S2 − b2E + b(PS − SP )

and E is the identity matrix. If, for a certain S , we obtain M ≥ 0, then the nonnegativity

of J is obvious. If we cannot find such an S , then we intend to show that J(x) < 0 for a

certain x.

2. Before implementing this program, we note that functional (1) can be rewritten in the

following two interesting ways. Under the change t = e−τ ,
dt

t
= −dτ, and, respectively,

tu = t
dx

dt
= −dx

dτ
= −w(τ), the above functional transforms into the functional

(3) J =

∞∫

0

e−τ
[
w2 + 2b(Px,w) + (Dx, x)

]
dτ,

dx

dτ
= w, x(0) = 0.

Such functionals are typical for mathematical economics models; the coefficient e−τ is called

the discounting factor. The minus sign in the middle term of (1) was chosen so that functional

(3) has the “canonical” form with the plus sign.

If we now set e−τ/2x = z and e−τ/2w = v, then we obtain the following linear system

with constant coefficients:

(4)
dz

dτ
= −1

2
z + v, z(0) = 0,

and the functional, which also has constant coefficients:

(5) J =

∞∫

0

[
v2 + 2b(Pz, v) + (Dz, z)

]
dτ.

In order not to study the convergence of the integral, we examine this functional on all

compactly supported z(t), i.e., such that z(t) = 0 for all sufficiently large t; here, by

Eq. (4), v(t) is also compactly supported. (For functional (1), this corresponds to the

consideration of only those x for which x(t) = 0 on [0, ε] for certain ε > 0. )

The differential constraint (4) can be simplified by setting
dz

dτ
= u = −1

2 z+v, expressing

v = u + 1
2 z from this, and substituting the result in (5). Here, (Pz, z) = 0, and the terms

of the form
∫

2(z, ż) dt = (z, z)|∞0 = 0 vanish. Thus, changing the notation τ , z to the

usual t , x, we obtain

(6) ẋ = u, x(0) = 0,
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(7) J =

∞∫

0

[
u2 + 2b(Px, u) + (Qx, x)

]
dt,

where Q = D+ 1
4E. Our functional will be studied precisely in this form. We first establish

a property which is true for functional (6), (7) in the space Rn of any dimension.

Lemma 2. If J ≥ 0, then Q ≥ 0 ( the Legendre condition ) .

Proof. Assume the contrary: let there exist h ∈ Rn such that (Qh, h) < 0. We set

x(t) = h and u(t) = 0 on the closed interval [1, T ], and on the closed intervals [0, 1] and

[T, T + 1] let x vary linearly from 0 to h and from h to 0 , respectively. Since the

integral over [1, T ] is the negative quantity (T − 1)(Qh, h) of order T and the integrals

over intervals [0, 1] and [T, T + 1] are finite, we obtain J(x) < 0 for large T , i.e., arrive

at a contradiction. ¤

3. Following the above idea, we take an arbitrary symmetric matrix S and add the expres-

sion
d

dt
(Sx, x) = 2(Sx, u) under the integral sign in order to extract a complete square from

the terms containing u. Then we obtain

(8) J =
∫ ∞

0

(
[u + (S + bP )x]2 + (Mx, x)

)
dt,

where

(Mx, x) = (Qx, x)− (Sx + bPx)2,

i.e.,

(9) M = Q− (S + bP )∗(S + bP ) = Q− S2 + b(PS − SP )− b2E.

If we obtain M ≥ 0 under this procedure, then, obviously, J ≥ 0 on all compactly

supported functions satisfying (6).

We ask the following question: for which b and Q can one obtain the inequality M ≥ 0

by choosing an appropriate matrix S ?

Without loss of generality, we can assume that the matrix Q is diagonal (because under

the rotation of the two-dimensional vector x and the corresponding vector u , the quadratic

forms (u, u) and (Px, u) do not change), i.e.,

Q =

(
q1 0

0 q2

)
,

where, according to Lemma 2, q1 ≥ 0 and q2 ≥ 0. We seek S in the form

S =

(
0 c

c 0

)
,
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where c is an unknown parameter for now. (We will see below that the consideration of

such an S is sufficient for our purposes.) Then, carrying out simple calculations, we obtain

M = Q− c2E − b2E + 2bc

(
−1 0

0 1

)
=

(
q1 − (b + c)2 0

0 q2 − (b− c)2

)
,(10)

and the question reduces to the following: for which b , q1 , and q2 does there exist c

such that

q1 − (b + c)2 ≥ 0 and q2 − (b− c)2 ≥ 0 ?

The latter is equivalent to the property that, for a certain c ,

(11)
√

q1 ≥ |b + c| and
√

q2 ≥ |b− c|.

It is easy to see that such a c can be found if and only if

(12)
1
2

(
√

q1 +
√

q2) ≥ |b|.

Thus, we have established that if (12) is fulfilled, then there exists a symmetric matrix

S (of the indicated form) such that the corresponding M ≥ 0, and, therefore, J ≥ 0.

What happens if (12) is not fulfilled? There is no matrix S of the required form (with

zero diagonal) but does this mean that the property J ≥ 0 is violated? We will show that

it is really so, and this is a key point of the approach proposed here.

Without loss of generality, we assume for convenience that b ≥ 0 (otherwise, we make

the change x1 ↔ x2 , u1 ↔ u2 under which (Px, u) transforms into −(Px, u), and all

other terms in the expression for J do not change).

Thus, let
1
2

(
√

q1 +
√

q2) < b.

In this case, obviously, there exists c such that

(13)
√

q1 < b + c,
√

q2 < b− c

(for example, we can take c = 1
2 (
√

q1 −√q2) ), i.e.,

q2
1 < (b + c)2, q2

2 < (b− c)2;

both entries of the matrix M are negative, and, therefore, M < 0 (is negative-definite).

Then, for certain δ > 0 , we have (Mx, x) ≤ −δ|x|2 ∀x, i.e., the second term under the

integral sign in (8) is negative-definite.

We now try to find an admissible pair (x, u) for which the first term under the integral

sign in (8) is zero, i.e., we set u + (S + bP )x = 0. Then we obtain the equation

(14) ẋ = −(S + bP )x.

Lemma 3. If (13) is fulfilled, then Eq. (14) has a periodic solution of the form x = f sinωt+

h cosωt for a certain ω 6= 0 and noncollinear vectors f , h ∈ R2.
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Proof. It is sufficient to show that the matrix R = (S + bP ) has a purely imaginary

eigenvalue λ = iω 6= 0. Since

R =

(
0 c− b

c + b 0

)
,

the equation for eigenvalues has the form λ2 − (c2 − b2) = 0. If c2 − b2 < 0, i.e., if |c| < b,

then this equation has two purely imaginary roots λ = ±iω , ω =
√

b2 − c2 > 0. Let us

show that precisely this case is realized. It follows from inequalities (13) that

−c < d−√q1 ≤ b, c < b−√q2 ≤ b,

i.e., ±c < b, which means that |c| < b. The lemma is proved. ¤

Since the vectors f and h are linearly independent, x(t) = f sinωt+h cosωt describes

an ellipse in R2, and we can assume that |x| ≥ 1 on it. Now, consider the indicated solution

x(t) on a large time interval [1, T ] (as was earlier done for x = const). On this interval,

the first term (the square) in expression (8) is equal to zero by definition, and since |x| ≥ 1,

we have (Mx, x) ≤ −δ ; therefore, the integral over the interval [1, T ] is a negative quantity

≤ −δ(T−1) of order T. On the closed intervals [0,1] and [T, T +1], as before, we reduce x

to zero end-values at the points 0 and T +1; since x(t) is bounded, the integrals over these

intervals also make only a finite contribution to the functional. Therefore, on the entire closed

interval [0, T + 1] , for large T we obtain a function x̂(t) for which J(x̂) ≤ −δT/2 < 0.

Remark 1. We stress once more that here, a key point consists of the property that the

found cyclic solution of Eq. (14) can be “rolled up” for an arbitrarily long time, thereby

accumulating an arbitrarily large negative integral of (Mx, x) and preserving the bounded

value of x. Moreover, the first term in (8) remains equal to zero all the time by virtue of (14).

Thus, we have shown that if inequality (11) is not fulfilled, then there exists a compactly

supported function x̂(t) for which J(x̂) < 0. Therefore, taking into account what was said

above, we have established the following property.

Theorem 1. Functional (7) is nonnegative on all compactly supported functions satisfying

Eq. (6) if and only if the eigenvalues of the matrix Q are nonnegative and satisfy inequal-

ity (12).

Remark 2. Squaring (12), we obtain the equivalent inequality (q1 + q2) + 2
√

q1q2 ≥ 4b2 ,

which can be written in terms of the original matrix Q not reducing it to the diagonal form,

i.e.,

(15) Tr Q + 2
√

det Q ≥ 4b2.
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4. Particular cases. (a) Let b = 0 and Q = 0. Then the equality is fulfilled in (12), and

by Theorem 1, we have J =
∫ ∞

0
u2 dt ≥ 0 for any x(t) such that ẋ = u and x(0) = 0.

Certainly, this result is obvious without Theorem 1 as well.

Let us examine what the obtained conditions mean for functionals (1) and (3). Since

Q = D + 1
4E, the inequality Q ≥ 0 means that D + 1

4E ≥ 0, and inequality (12) means

that

(16)
1
2

(√
d1 +

1
4

+

√
d2 +

1
4

)
≥ |b|.

(b) Consider the case b = 0 and D = −1
4E (i.e., Q = 0) . Then functional (3) has the

form (we write t instead of τ once again)

(17) J =

∞∫

0

e−t

(
u2 − 1

4
x2

)
dt ≥ 0

on all compactly supported x(t) such that

(18) ẋ = u, x(0) = 0.

In other words, the following inequality is fulfilled for such functions:

(19)

∞∫

0

e−tx2 dt ≤ 4

∞∫

0

e−tu2 dt.

If we introduce the Hilbert space H = L2[0,∞) with weight e−t, then (because all

compactly supported functions are dense in this space) it follows from (19) that the integral

operator u 7→ x given by formula (18) is a linear bounded operator H → H, and its norm

does not exceed
√

4 = 2. Actually, its norm is equal to 2, since the constant 4 in inequality

(19) is sharp.

(c) For functional (5), this property means that for any compactly supported function z

satisfying (4), we have

J =

∞∫

0

(
v2 − 1

4
z2

)
dt ≥ 0,

i.e.,

(20)

∞∫

0

z2 dt ≤ 4

∞∫

0

v2 dt.

This implies that for any function v ∈ L2[0,∞), the function z(t) satisfying the equation

(21) ż = −1
2

z + v, z(0) = 0,

also belongs to L2[0,∞), and, moreover, the norm of the operator v 7→ z does not exceed

(and actually is equal to) 2.
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Also, we note that the same property holds for the equation

(22) ż = −kz + v, z(0) = 0

for any k > 0. (It reduces to (21) by simple scaling.) Namely, the following lemma is true.

Lemma 4. For any function v ∈ L2[0,∞), the function z(t) , which is a solution of Eq.

(22), also belongs to L2[0,∞) , and, moreover, the norm of the operator v 7→ z is equal to

1/k.

Remark 3. The above operator, although being integral and, therefore, completely con-

tinuous on the space L2[0, T ] for any finite T , is not completely continuous on the space

L2[0,∞). In particular, it has a purely continuous spectrum. (On the complex plane, it is

the disk whose diameter is the segment [0, 1/k] of the real axis.)

(d) For functional (1) with D = −1
4E and b = 0 , we obtain the inequality

J =

1∫

0

(
t2u2 − 1

4
x2

)
dt ≥ 0,

i.e.,

(23)

1∫

0

x2 dt ≤ 4

1∫

0

t2u2 dt

for all x , u satisfying Eq. (2) that are equal to zero in a certain neighborhood of t = 0.

Then the same inequality is also true for all u(t) for which the integral on the right-hand

side of (23) converges (i.e., for all u(t) from the space L2[0, 1] with weight t2); moreover,

the integral on the left-hand side also converges by virtue of estimate (23). Note that in all

three inequalities (19), (20), and (23), the dimension of x can be arbitrary, because these

inequalities are, in fact, one-dimensional.

Inequality (23) and inequalities (20) and (19) corresponding to it are the well-known

Hardy inequality [7, Sec. 9.8]; therefore, the inequality J ≥ 0 can be treated as its two-

dimensional generalization if (12) and (16) are fulfilled.

(e) Thus, functionals (1), (3), (5), and (7) have a meaning not only for compactly sup-

ported x , u (which was initially assumed for simplicity) but for any pairs x , u from the

space L2 with the corresponding weight. We have the following simple proposition.

Proposition 1. In functional (3), the pair (x,w) belongs to L2 [0,∞) with the weight

e−τ ⇐⇒ in functional (5), the pair (z, v) belongs to the “ordinary” L2 [0,∞) ⇐⇒ in

functional (7), the pair (x, u) belongs to L2 [0,∞) ⇐⇒ in functional (1), the pair (x, tu)

belongs to L2 [0, 1] .
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The nonnegativity of the functional J on the set of compactly supported pairs is equiva-

lent to its nonnegativity on the set of pairs from the corresponding space L2. (As a compactly

supported pair for the space L2[0, 1] , we take a pair for which x = u = 0 on [0, ε] for a

certain ε > 0. )

Estmates (19), (20), and (23) for functionals (1), (3), and (5) imply that the belonging of

the control to the corresponding space L2 ensures the belonging of the phase component to

same space L2 as well. This is not the case for functional (7): the corresponding case b = 0

and Q = 0 leads, as was already noted, to the trivial inequality
∫

u2 dt ≥ 0, which does

not relate the phase component to the control.

Let us show how the representations in the form of “sum of squares” for functionals (1),

(3), (5), and (7) are related to each other. If for functional (1) we have obtained

J =

1∫

0

(
(tu−Rx)2 + (Mx, x)

)
dt,

dx

dt
= u,

then for (3), after the substitution dt = e−τdτ , tu = −w, we obtain

J =

∞∫

0

e−τ
[
(w + Rx)2 + (Mx, x)

]
dτ,

dx

dτ
= w;

for functional (5) we have e−τ/2x = z , e−τ/2w = v, and

J =

∞∫

0

[
(v + Rz)2 + (Mz, z)

]
dτ,

dz

dτ
= −1

2
z + v,

and then for (7) we have u = −1
2 z + v, i.e., v = 1

2 z + u,

J =

∞∫

0

[(
u +

(
R +

1
2

)
z

)2

+ (Mz, z)

]
dτ,

dz

dτ
= u.

5. We call attention to the following interesting property.

Lemma 5. Let inequality (12) or inequality (15) equivalent to it hold for functional (7) with

the equality sign. Then the functional J is positive, i.e., J(x) > 0 ∀x 6= 0.

Indeed, if (12) is an equality, then equalities are also fulfilled in formula (11), and the

matrix M vanishes. Therefore, the functional J reduces to the first term in (8), and if

J(x) = 0, then u + (S + bP )x = 0, i.e., ẋ = −(S + bP )x. Since x(0) = 0 , we obtain

x ≡ u ≡ 0 ; this is what was required to be proved.

Thus, if (12) is fulfilled in the form of an equality, then, on the one hand, we always

have J(x) > 0; on the other hand, one cannot decrease certain qi or increase |b| , since
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inequality (12) is violated in this case, and by the same Theorem 1, we obtain J(x) < 0 for

a certain x .

At first glance, this circumstance contradicts the apparent Legendre property of J (es-

pecially in formula (5): we have the identity matrix of u2 , i.e., the strengthened Legendre

condition is fulfilled uniformly in t !) because it is known that if the Legendre functional is

positive, then it is positive-definite, and, therefore, any functional that is close to it is also

positive-definite. However, there is no contradiction here because our J is not Legendre: for

functionals on [0,∞) , the positivity of the coefficient of u2 is not sufficient to be Legendre

because the remaining terms are not weakly continuous. (This corresponds to the property

that the operator u 7→ x mentioned in Lemma 4 is not completely continuous when it is

considered on an infinite interval.)

Lemma 5 implies that the constant 4 in inequalities (19), (20), and (23) is sharp but

is not attained. That is, on the one hand, it cannot decrease, and, on the other hand, for

any nonzero function x(t) , these inequalities are strict, i.e., they are fulfilled with a certain

C(x) < 4. This is a rather interesting peculiarity of inequalities for functions and their

derivatives.

One more corollary of Lemma 5 is the possibility of constructing an example of optimal

control problem on [0,∞) which has no solution.

Example 1. Consider the problem J(x, u) → min, where J is given, e.g., by formulas (6)

and (7) with coefficients satisfying (12) in the form of the equality (for example, b = q1 =

q2 = 0) under the constraint

(24)

∞∫

0

|x|2 dt = 1.

Let us show that the minimum in this problem is not attained. For this purpose, it is

sufficient to show that inf J = 0 (and then, by Lemma 5, it is certainly not attained).

Indeed, if for a given constraint, we have inf J = a > 0, then, by virtue of the homo-

geneity, for any x ∈ L2 [0,∞) , we have J(x) ≥ a

∫
|x|2 dt, i.e.,

(25) J̃(x) = J(x)− a

∫
|x|2 dt ≥ 0.

But the functional J̃ has matrix Q̃ = Q− aE, that violates the inequality (12) (because it

is fulfilled as an equality for Q ); therefore, by Theorem 1, (25) cannot hold for all x . We

arrive at a contradiction.

We call attention to the fact that the proposed problem satisfies the standard require-

ment of convexity in u. Certainly, one can raise the objection that it does not satisfy the

requirement of compactness in u. Then we consider the following example.
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Example 1’. The same problem with the additional constraint |u| ≤ 1. Let us show

that here inf J = 0 still holds.

Take b ≥ 0 for certainty. If the equality holds in (12), then there exists a unique c

for which (11) is fulfilled; moreover it becomes an equality. In this case,
√

q1 = b + c ,
√

q2 = b− c, the matrix M = 0, and the functional has the form

(26) J =

∞∫

0

(u + Rx)2 dt,

where

(27) R =

(
0 −(b− c)

(b + c) 0

)
=

(
0 −√q1√
q2 0

)
.

Since the matrix R has the characteristic equation λ2 +
√

q1q2 = 0, it always has an

eigenvalue λ = iω with zero real part, and, therefore, Eq. (14), ẋ = −Rx , always has a

solution of the form x = ξeiωt for a certain real ω and a complex ξ 6= 0 .

As in Lemma 3, for each N , we take a function xN (t) that coincides with this solution

on the closed interval [1, N ], vanishes for t = 0 and t > N + 1 , and is linear on the

intervals [0, 1] and [N, N + 1]. Then, |xN (t)| ≤ const, and for uN = ẋN the inequality

|uN (t)| ≤ const also holds. Therefore,

J(xN ) =

1∫

0

(u + Rx)2 dt +

N+1∫

N

(u + Rx)2 dt ≤ const

and ∞∫

0

|xN |2 dt = β2
N →∞.

(Here, β2
N is a quantity of order N .) Then x̂N = xN/βN satisfies constraint (24) and

|ûN | ≤ const
βN

→ 0 for it; therefore, for large N , the pair (x̂N , ûN ) satisfies all the con-

straints and

J(x̂N ) ≤ const
β2

N

→ 0 .

This implies inf J = 0 , which is what was required to be proved.

In the particular case where b = q1 = q2 = 0 (actually, this is a one-dimensional case),

we obtain that in the problem

J =

∞∫

0

u2 dt → min, ẋ = u, x(0) = 0,

∞∫

0

x2 dt = 1,

and also in this problem with the additional constraint |u| ≤ 1 , the minimum is not attained.
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Similar considerations show that there is no solution in the following example of the

“economics” type.

Example 2. Consider the problem

J =

∞∫

0

e−τ [w2 + 2b(Px, w) + (Dx, x)] dτ → min,

dx

dτ
= w, x(0) = 0,

(28)

∞∫

0

e−τ (x, x) dτ = 1,

where b and D satisfy condition (16) in the form of an equality (e.g., b = 0 and d1 =

d2 = −1/4 ).

Here, as before, inf J = 0, but it is not attained. Indeed, in this case, the corresponding

functional (7), as we know, can be represented in the form (26) with the matrix R of the

form (27) having an eigenvalue λ = iω, and then, according to Sec. 4, our functional can be

represented in the form

J =

∞∫

0

e−τ (w + R′x)2 dτ,

where R′ = R − 1
2 E has the eigenvalue λ = −1

2 + iω. Then the equation ẋ = −R′x has

a solution x(τ) = ξ e( 1
2

+iω)τ , and for the corresponding xN (τ) (which coincides with x(τ)

on the closed interval [1, N ] and is equal to zero outside (0, N + 1) ), we still have

∞∫

0

e−τ |xN |2 dτ = βn →∞.

Moreover, for uN (τ) = ẋN (τ) , the estimate |uN (τ)| ≤ const ·eτ/2 is always satisfied so

that still J(xN ) ≤ const . Then, as before, passing to x̂N = xN/βN , we obtain J(x̂N ) → 0 ;

this is what was required to be proved.

However, note that when we pass to Problem 2′ by adding the constraint |u| ≤ c , there

is already no analogy with problem 1′. The point is that in Example 2 the “vanishing” control

u = ξ e( 1
2

+iω)τ (1
2 + iω) has the norm ‖u‖∞ of order e

1
2

N (it is attained for τ = N ),

while the left-hand side of (28) is a quantity of order N ; therefore, for the normalized

sequence x̂N = xN/
√

N satisfying (28), we have ‖ûN‖∞ ' eN/2/
√

N → ∞, which means

the violation of the constraint ‖u‖∞ ≤ c for any c.
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6. Relation with the theory of conjugate points. Let us now study the problem of the

nonnegativity of functional (6), (7) using the classical Jacobi condition for conjugate points.

The nonnegativity of J on the set of all compactly supported x, u (which is equivalent to

its nonnegativity on all x, u ∈ L2 [0,∞) ) is obviously equivalent to the fact that ∀T > 0

J(x, u) ≥ 0 for all x, u concentrated on the closed interval [0, T ].

Thus, we need that for any fixed T > 0 our functional satisfies the inequality

(29) JT =

T∫

0

[u2 + 2b(Px, u) + (Qx, x)] dt ≥ 0

on all x, u such that u ∈ L2 [0, T ], and

(30) ẋ = u, x(0) = 0, x(T ) = 0.

We have a standard quadratic functional of the classical calculus of variations satisfying the

strengthened Legendre condition. The Jacobi condition for it states that JT ≥ 0 if and only

if the interval (0, T ) does not contain a point conjugate to t = 0. Since T is arbitrary,

there must be no points conjugate to t = 0 on the whole semi-axis (0,∞) . We want to find

out for which b and Q this case is realized.

To find a conjugate point, let us write the Euler–Jacobi equation

d

dt
(Lu) = Lx ,

where L is the integrand in (29). Thus, we have the equation (of second order and with

constant coefficients)

(31) ẍ = −(2b)Pẋ + Qx, x(0) = 0,

and the conjugate point T∗ is determined by the equation x(T∗) = 0. (To be more precise,

we are interested in the “first” conjugate point, that is the smallest T∗ > 0 for which there

exists a nontrivial solution of Eq. (31) vanishing at this point.)

The nonnegativity of (29) for any T is equivalent to the property that (31) vanishes

nowhere on (0,∞). Therefore, Theorem 1 is equivalent to the following (a priori not obvious)

assertion on the qualitative behavior of solutions of Eq. (31).

Theorem 2. Any nontrivial solution of Eq. (31) does not vanish on the semi-axis (0,∞)

iff the eigenvalues of the matrix Q are nonnegative and satisfy inequality (12).

Proof. In the case where Q = qE is a scalar matrix, this theorem can be easily proved

directly. In this case, inequality (12) becomes

(32)
√

q ≥ b, i.e., q ≥ b2.

Let us consider the vector x ∈ R2 as a representation of a complex number z ∈ C.

Then the matrix P corresponds to the multiplication by i, and Eq. (31) becomes

(33) z̈ = −(2bi)ż + qz, z(0) = 0.



14 A. V. DMITRUK

The corresponding characteristic equation λ2 + (2bi)λ− q = 0 has the roots

λ = −bi±
√
−b2 + q.

Under the root sign, we have exactly the quantity from inequality (32). Consider all possible

cases.

(a) q > b2, i.e., inequality (32) is strict. Then λ = ±a − bi, where a =
√

q − b2 > 0,

and

z = e−ibt(c1 sinh at + c2 cosh at).

By virtue of the initial condition z(0) = 0 , we have c2 = 0 ; therefore, c1 6= 0 (we consider

only nontrivial solutions!), and then z(t) 6= 0 for all t > 0. Thus, in this case, there is no

conjugate point.

(b) q = b2, i.e., (32) is fulfilled with the equality sign. Then λ = −bi is the eigenvalue

of multiplicity 2, and the general solution of Eq. (33) has the form

z = e−ibt(c1t + c2).

Taking the initial condition into account, we have c2 = 0 , c1 6= 0, and then z(t) 6= 0 for

all t > 0 once again, i.e., the conjugate point is still absent.

(c) 0 < q < b2, i.e., (32) is not fulfilled. Then λ = −ib ± ia, where a =
√

b2 − q < b,

i.e., λ1 = −iµ1 , and λ2 = −iµ2, where 0 < µ1 < µ2. Here,

z = c1e
−iµ1t + c2e

−iµ2t

and c1 + c2 = 0, i.e., z = c(e−iµ1t − e−iµ2t) , c 6= 0. The relation z(T∗) = 0 means that

ei(µ2−µ1)T∗ = 1.

The smallest solution of this equation is T∗ = 2π/(µ2−µ1). Thus, in this case, the conjugate

point does exist.

(d) 0 = q < b2 ; (32) is not fulfilled. Then λ1 = 0 , λ2 = −2bi, and z = c(−1+ e−2bi t) ,

c 6= 0. We find the conjugate point T∗ = π/b from the relation z(T∗) = 0 .

(e) q < 0 < b2 ; (32) is not fulfilled. Then λ1 = iµ1 and λ2 = −iµ2, where 0 < µ1 < µ2.

Similarly to case (c), we have z = c(eiµ1t − e−iµ2t) , c 6= 0, and the conjugate point is

T∗ = 2π/(µ2 + µ1).

(f) Finally, consider the trivial case where b = 0 . In this case, we have λ2 = q (and the

functional actually becomes one-dimensional). If q = 0, i.e., if (32) is satisfied, then, taking

the initial condition into account, we have z = ct , c 6= 0, and then z(t) > 0 for all t > 0.

If q > 0, i.e., if (32) is also fulfilled; then z = c sinhωt , ω =
√
|q| , c 6= 0, and then

z(t) > 0 for all t > 0.

On the other hand, if q < 0, (32) is not satisfied, then z = c sinωt , ω =
√
|q| , and

c 6= 0, and the condition z(T∗) = 0 yields the conjugate point T∗ = π/ω.
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Thus, we have considered all possible cases and established that in each of them, (32)

correctly points to the presence or absence of a conjugate point. Theorem 2 and Theorem 1

equivalent to it are proved. ¤

In the case of distinct eigenvalues q1 6= q2 , this method for proving Theorem 2 would

require much more complicated calculations.

7. Connection with the frequency criterion. Let us point to one more possible method

for studying our functional, namely, to the use of the so-called “frequency criterion” (see,

e.g., [2, 10]). In essence, it consists of the following simple procedure (strange as it seems,

this procedure is not mentioned in these works). As before, we consider the functional J

of the form (7) on solutions of Eq. (6). If J(x) ≥ 0 on all compactly supported x, then

for any fixed T > 0 , we obviously have J(x) ≥ 0 on all functions x concentrated on the

closed interval [0, T ]. Any such function x and its derivative u can be expanded into the

Fourier series on this interval. Using the complex notation, we have

(34) x = Re

(
ξ0 +

∞∑

k=1

ξk eiωkt

)
, u = Re

( ∞∑

k=1

iωk ξk eiωkt

)
,

where ξk are arbitrary vectors from C2, the series of whose squares converges, and ωk =
T

2π
k . (Obviously, it sufficies to consider finite sums of the above form, since they are dense

in L2[0, T ] .)

Substitute (34) in functional (7). Note that in doing so, the products of distinct harmonics

yield a function of the form ξ′eiω′t, where ω′ = ωk − ωl 6= 0, whose integral over its period

is equal to zero. Thus, J is decomposed into a sum of functionals for each harmonic taken

separately. These harmonics can be conveniently calculated by the following formula: if

arbitrary ξ, η ∈ C2 and real ω =
T

2π
k ( k is an integer) are given, then the complex

fuctions

z = ξeiωt, y = ηeiωt,

satisfy the following relation:

(35)

T∫

0

(Re z,Re y) dt =
1
2

Re

T∫

0

〈z, y〉 dt =
T

2
Re〈ξ, η〉,

where we denoted by parentheses the componentwise inner product of two-dimensional vectors

and by angle brackets, the complex inner product. (This relation is established by a direct

calculation.)
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Since the coefficients of all harmonics are independent of each other, we obtain the fol-

lowing requirement for each harmonic with serial number k ≥ 1 :

(36) J = Re

T∫

0

(ω2
k|ξk|2 − 2biωk(Pξk, ξ̄k) + (Qξk, ξ̄k)) dt ≥ 0.

Let us study this inequality (omitting the subscript k ). Let ξ = f+ih, where f, h ∈ R2.

Then the integrand in (36) can be written in the form

ω2(|f |2 + |h|2)− 2iωb(P (f + ih), (f − ih)) + (Q(f + ih), (f − ih));

therefore, the real part of inequality (36) means that

(37) ω2(f2 + h2)− 4ωb(Pf, h) + (Qf, f) + (Qh, h) ≥ 0.

This inequality must be fulfilled for any vectors f, h ∈ R2 and for any ω that is a multiple

of T/2π .

Now, note that since T is arbitrary, inequality (37) must be fulfilled for all ω > 0 .

Moreover, if we replace ω by −ω and f by −f in this inequality, then it does not

change, and hence, it must be fulfilled for all ω ∈ R. The consideration of the harmonic

k = 0 leads to the obvious requirement that Q ≥ 0, which is already contained in (37) (one

should take ω = 0, h = 0 ).

Thus, we arrive at the following proposition.

Proposition 2. The functional J is nonnegative on all compactly supported functions iff

(37) holds for any f, h ∈ R2 and any ω ∈ R .

Proof. (a) Sufficiency. Let (37) be fulfilled. Then for any T > 0 and any harmonic on the

closed interval [0, T ] , (36) is fulfilled. Therefore, for each finite sum of such harmonics, we

have J ≥ 0, and then by the mentioned density of finite sums in L2[0, T ] , we have J ≥ 0

also for any pair (x, u) ∈ L2[0, T ] (in particular, for such pairs with x(T ) = 0). Since T

is arbitrary, this implies that J ≥ 0 for all compactly supported (x, u) ∈ L2 [0,∞).

(b) We prove necessity by assuming the contrary. Let (37) be not fulfilled for certain

ω, f, and h. Then we obtain a violation of (36) for the corresponding harmonic (x, u) on

its period [0, T ] , i.e., J(x, u) = −α < 0. On its multiple period [1, NT + 1] , we have

J(x, u) = −αN for any N . Now, connecting x(1) linearly with x(0) = 0 on the interval

[0, 1], and x(NT + 1) = x(1) with x(NT + 2) = 0 on the interval [NT + 1, NT + 2], we

obtain only a finite contribution to the integral (because x(t) is bounded) so that for large

N , we have a finitely supported pair (x̂, û) at which J < 0 ; this is what was required to

be proved. ¤

The method of studying the integral quadratic functional on [0,∞) by passing to the

expansion of x, u into Fourier series was used in [3, 4, 6]; criterion (37) was also obtained

in these works.
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Let us analyze this criterion. Since we have a quadratic trinomial in ω , we take its

discriminant to obtain that (37) is equivalent to the inequality

(38) 4b2(Pf, h)2 ≤ ((Qf, f) + (Qh, h))(f2 + h2),

which must be fulfilled for any f, h ∈ R2 . In this form, the criterion for the nonnegativity

of J was obtained in [1]. Its deficiency is that (38) is an inequality of fourth degree with

respect to an arbitrary pair f, h, and it is not clear how to study it further.

Let us show that, in fact, (38) is equivalent to (12). As before, without loss of generality,

we take Q = diag (q1, q2). Represent the vectors f and h in this basis in the coordinate

form, i.e., take f = (f1, f2) and h = (h1, h2). Then (38) becomes

(39) 4b2(f1h2 − f2h1)2 ≤ (q1(f2
1 + h2

1) + q2(f2
2 + h2

2))(f
2
1 + h2

1 + f2
2 + h2

2).

If we introduce the vectors x = (f1, h1) and y = (f2, y2), then inequality (39) can be

rewritten as

(40) 4b2(Px, y)2 ≤ (q1x
2 + q2y

2) (x2 + y2).

It is clear that for any fixed |x| and |y| , the maximum of the left-hand side is attained

for x ⊥ y (i.e., the worst case is realized); then |(Px, y)| = |x| · |y|, and, therefore, (40) is

equivalent to the inequality

(41) 4b2x2 y2 ≤ (q1x
2 + q2y

2) (x2 + y2)

for scalar quantities x2 and y2. For |x| = 0 or |y| = 0 , it holds trivially, and, therefore,

it is sufficient to verify it for |x| > 0 and |y| > 0. Then, setting |y|2 = α|x|2, we obtain

that the following inequality must hold for all α > 0 :

4bα ≤ (q1 + q2α)(1 + α).

Dividing it by α, we obtain

(42) 4b ≤ (q1 + q2) +
q1

α
+ q2α.

As is known, the minimum of the right-hand side (the worst case once again) is attained for

q1/α = q2α, i.e., for α =
√

q1/q2. Then (42) transforms into the inequality

(43) 4b2 ≤ (q1 + q2) + 2
√

q1q2.

But the right-hand side here is a complete square (
√

q1+
√

q2)2, and hence, (43) is equivalent

to 2|b| ≤ √
q1 +

√
q2, which is exactly the above inequality (12).
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8. Justification of the method. Let us dwell on the justification of the method proposed

in Sec. 3. Why does the addition of the expression
d

dt
(Sx, x) under the integral sign lead

to success? Note that for the problem of minimizing the functional (7) over the solutions

of system (6), the function ϕ(x) = (Sx, x) is the so-called Krotov function. Recall that in

the general case, a Krotov function is a function ϕ(x, t) for which the integrand, after the

addition of
d

dt
ϕ(x, t), attains the minimum value over all x, u, that are not related by

Eq. (6), on the examined trajectory x0(t) , u0(t). If such a (smooth) function exists, then

it is easily established that this trajectory yields a strong minimum in the problem. (For

more details, see [5, 9].) Thus, the existence of a Krotov function is a sufficient condition

for a strong minimum. In studying functional (7), we actually take x0(t) ≡ u0(t) ≡ 0

as the examined trajectory, and the minimality of this trajectory means that J ≥ 0 on

subspace (6).

Since functional (7) is quadratic, it is natural to seek a Krotov function as a quadratic

form, i.e., ϕ(x) = (Sx, x). A nontrivial (and, in the general case, not yet sufficiently studied)

question is whether the existence of a Krotov function is a necessary condition for optimality

of the examined trajectory? In our case, this question is formulated as follows: is the exis-

tence of the required quadratic form (Sx, x) necessary for the nonnegativity of the functional

(7)? In other words, let there be no symmetric matrix S for which the integrand in (8) is

nonnegative for independent x, u (i.e., there does not exist S for which M ≥ 0 ). Then,

why does there exist x, u satisfying (6) for which J < 0 ? In Sec. 3, this property was

established by presenting a particular pair (x, u) for the two-dimensional case. A.A. Mi-

lyutin demonstrated (see [11]) that it is also valid for the case of an arbitrary linear system

ẋ = Ax + Bu with constant coefficients under arbitrary dimensions of x and u. This

property is of interest because it is a quite rare case where one can assert that the existence

of a Krotov function is necessary for optimality. Here, we present its proof for the case of

the simplest control system ẋ = u , x ∈ Rn (with arbitrary n), in which the proof is

technically much easier than in the general case.

Let us consider the quadratic functional

(44) J =

∞∫

0

(u2 + (V x, u) + (Qx, x)) dt

on the subspace L :

(45) ẋ = u, x(0) = 0,

where x, u ∈ Rn, Q is a symmetric matrix, and V is a skew-symmetric matrix (the

symmetric part of V yields zero in the integral). We are interested in the following problem:

when is J ≥ 0 on the subspace L ?
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As before, we take an arbitrary symmetric matrix S and, adding
d

dt
(Sx, x) under the

integral sign, we obtain

(46) J =

∞∫

0

(
[u + (S + V )x]2 + (M(S)x, x)

)
dt,

where

(47) (M(S)x, x) = (Qx, x)− (Sx + V x)2,

and M(S) is a symmetric matrix.

Following Milyutin, we denote by λ(S) the minimum eigenvalue of the matrix M(S),

i.e.,

λ(S) = min
|x|=1

(M(S)x, x),

and set λ0 = supλ(S) over all symmetric S. If λ0 > 0, then M(S) > 0 for a certain

S , and, therefore, J ≥ 0. If λ0 = 0, then for all ε > 0 , we consider the functional

Jε = J +
∫

ε(x, x) dt, for which Qε = Q + εE , and therefore, λ0
ε = λ0 + ε > 0. Hence,

Jε ≥ 0, and then, passing to the limit, we also obtain that J ≥ 0 on L.

It remains to consider the case where λ0 < 0. Our purpose is to show that, in this case,

there exists x ∈ L for which J(x) < 0. Thus, we should prove the following theorem.

Theorem 3 (A.A. Milyutin). The functional J ≥ 0 on L iff λ0 ≥ 0.

This theorem justifies the procedure of searching for an appropriate matrix S proposed

above. The proof uses the following property of matrices established by Milyutin.

Let R be an arbitrary (n× n) -matrix.

Lemma 6 ([11]). The following two conditions are equivalent :

(a) for any symmetric matrix S , we have

(48) max
|x|=1

(Rx, Sx) ≥ 0 ;

(b) the matrix R has an eigenvalue with zero real part.

Proof. Show that (b) =⇒ (a). If λ = 0 is an eigenvalue of the matrix R, then there exists

a vector x0 such that |x0| = 1 and Rx0 = 0. Then for all S , we have (Rx0, Sx0) = 0 ,

and, therefore, (48) is fulfilled.

Let λ = iω 6= 0 be an eigenvalue of the matrix R. Then, as is known, the equation ẋ =

Rx has a periodic solution of the form x0(t) = f sinωt+h cosωt, where the vectors f, h ∈
Rn are linearly independent, and, therefore, x0(t) 6= 0 everywhere. Take an arbitrary

symmetric matrix S and consider the function m(t) = (Sx0(t), x0(t)). Since it is periodic,

it has a maximum point t∗ . At this point, we have
d

dt
m(t∗) = 2(Sx0(t∗), Rx0(t∗)) = 0 ,

and since x0(t∗) 6= 0, this implies (48), which was required to be proved.
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Prove the implication (a) =⇒ (b) by assuming the contrary. Let all eigenvalues λ of

the matrix R have Reλ 6= 0. We need to show that there exists a symmetric matrix S

for which (48) is violated. This is equivalent to the fact that there is a quadratic form

ϕ = (Sx, x) which has a negative derivative on any nonzero solution of the system ẋ = Rx ,

i.e.,
d

dt
ϕ(x(t)) = (Sx, Rx) < 0, i.e., ϕ is a Lyapunov function for this system. But the

existence of a quadratic Lyapunov function does not depend on the basis in which the system

is considered, so we can seek this function in the basis where the matrix R reduces to the

real Jordan form. Obviously, it is enough to consider the case of a single real Jordan block

(since any block corresponds to an invariant subspace of the matrix R ), i.e., we can assume

that R is the block corresponding to a pair of complex-conjugate eigenvalues λ , λ̄. In

addition, it can be assumed that Reλ < 0 (otherwise, we replace R by −R and S by

−S ). As is known from the theory of ordinary differential equations, in this case the system

ẋ = Rx has a quadratic Lyapunov function f(x) = (Sx, x). Now it remains to sum up

the quadratic forms corresponding to all Jordan blocks and return to the initial basis. The

lemma is proved. ¤

We also need the following nontrivial fact. Denote by Σ the unit sphere in Rn .

Lemma 7 ([11]). Let a nonzero subspace Γ0 ⊂ Rn and an (n×n) -matrix R be such that,

for any symmetric (n× n) -matrix S , we have

(49) max
x∈Γ0∩Σ

(Rx, Sx) ≥ 0.

Then there exists a nonzero subspace Γ ⊂ Γ0 invariant with respect to R ( i.e., RΓ ⊂ Γ)

for which (49) is also fulfilled.

Proof. Let Γ1 be the orthogonal complement to Γ0, i.e., let Rn = Γ0 ⊕ Γ1 . Denote

by π0 and π1 the orthogonal projections on Γ0 and Γ1 , respectively. For any operator

A : Rn → Rn , we consider the operators A0 = π0A and A1 = π1A, so that A = A0 +A1.

Then, the following expansion always holds:

(50) (Rx, Sx) = (R0x, S0x) + (R1x, S1x).

Note that on the subspace Γ0 , the operator A coincides with a certain symmetric

operator S if and only if A0 is a symmetric operator on Γ0, while A1 can be completely

arbitrary. (It is convenient to imagine Γ0 and Γ1 as coordinate subspaces.)

Define the subspace L = {x ∈ Γ0 |Rx ∈ Γ0)}. If L = Γ0, i.e., if Γ0 is invariant for R,

then everything is proved, and, therefore, it is necessary to consider the case L 6= Γ0.

Let us prove that always L 6= {0} . In other words, the operator R1 always has a

nontrivial kernel on Γ0 . If this is not so, i.e., if R1x 6= 0 on Γ0 ∩ Σ, then we take a

symmetric matrix S such that S0x = 0 and S1x = −R1x on Γ0 . On Γ0 ∩Σ , we obtain

for this matrix that

(Rx, Sx) = −(R1x, S1x) = −|R1x|2 < 0,



NONNEGATIVITY CRITERION FOR A DEGENERATE QUADRATIC FORM 21

which contradicts the condition of the lemma.

Thus, L is a nonzero subspace in Γ0 , and we assume that L 6= Γ0 . We assert that (49)

is fulfilled for L as well, i.e., for any symmetric matrix S , we have

(51) max
x∈L∩Σ

(Rx, Sx) ≥ 0.

Assume the contrary. Then there exist a symmetric matrix S and a number α0 > 0

such that

(52) (Rx, Sx) ≤ −α0 < 0 on L ∩ Σ.

We decompose Γ0 into the orthogonal sum Γ0 = L ⊕ H, and for x ∈ Γ0 we write

x = xL + xH . By definition, RL ⊂ Γ0 and RH ∩ Γ0 = {0}.
Now, take a symmetric matrix Ŝ such that

Ŝ0 = S0, Ŝ1 = −NR1 on Γ0.

According to (50), the following relation is fulfilled on Γ0 for this matrix:

(53) (Rx, Ŝx) = (R0x, S0x)−N |R1x|2.
Since RL ⊂ Γ0, we have R1L = 0 , and, therefore, for each x = xL + xH , we obtain

R1x = R1xH ; since RH ∩ Γ0 = {0}, we have |R1xH |2 ≥ α1|xH |2 for a certain α1 > 0.

For x = xL + xH ∈ Γ0 , let us calculate the first term on the right-hand side (53), i.e.,

(R0x, S0x) = (R0xL, S0xL) + (R0xL, S0xH) + (R0xH , S0xL) + (R0xH , S0xH).

Here, according to (52), (R0xL, S0xL) ≤ −α0|xL|2 , and therefore, the left-hand side of (53)

satisfies the following estimate on Γ0 with certain constants β and γ :

(Rx, Ŝx) ≤ −α0 |xL|2 + 2β|xL| · |xH |+ γ|xH |2 −Nα1|xH |2.
Here, the right-hand side is a two-dimensional quadratic form in |xL| and |xH |. Obviously,

it is negative-definite for a sufficiently large N, which implies the violation of (51) for Ŝ.

Thus, we have shown that if the subspace Γ0 is not invariant with respect to R, then

there exists a nonzero subspace L of a smaller dimension in it for which (49) is still fulfilled,

i.e., we have (51). Continuing this process, in a finite number of steps we arrive at an invariant

subspace L. The lemma is proved. ¤

Let us now turn to the determination of λ0.

Lemma 8. The sup λ(S) over all symmetric S is attained, i.e., there exists S for which

λ0 = λ(S).

Proof. It is clear in advance that λ0 > −∞. Let a sequence Sk be such that λ(Sk) → λ0.

If the sequence of norms ‖Sk‖ is bounded, then one can assume that Sk → S0, and then,

the limit relation obviously holds: λ(S0) = λ0 (since the minimum of the quadratic form on

the unit sphere continuously depends on its coefficients).
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Assume now that ‖Sk‖ → ∞ (on a certain subsequence). In this case, there exist

vectors xk such that |xk| = 1 and |Skxk| → ∞. Then, according to (47), the leading term

in (M(Sk)xk, xk) is −|SkxK |2 → −∞, and, therefore,

λ(Sk) = min
|x|=1

(M(Sk)x, x) ≤ (M(Sk)xk, xk) → −∞,

which contradicts the relation λ(Sk) → λ0. The lemma is proved. ¤

Now we can give a proof of Theorem 3.

Proof of Theorem 3. As was already mentioned, it suffices to consider the case λ0 < 0 .

For any symmetric matrix S , there exists a nonzero subspace Γ(S) ⊂ Rn (which is

invariant for the matrix S) such that

Arg min
x∈Σ

(M(S)x, x) = Γ(S) ∩ Σ.

(Indeed, the quadratic form (M(S)x, x) − λ(S)(x, x) ≥ 0 on Rn and has a nontrivial

subspace of zeros; this is exactly the desired Γ(S) .) Now, take any S0 at which maxλ(S)

is attained. Therefore, it is a solution of the problem

λ(S) = min
x∈Σ

(M(S)x, x) → max
S

,

where x plays the role of a parameter.

Denote Γ0 = Γ(S0) and introduce the matrix R = S0 + V so that

(54) M(S0) = (Qx, x)− (Rx)2.

A key point in the proof of Theorem 3 is the following fact.

Proposition 1. For any symmetric matrix S̄ , we have

(55) max
x∈Γ0∩Σ

(Rx, S̄x) ≥ 0.

Proof. This follows from the formula of the directional derivative of the minimum function.

Consider the symmetric matrix Sε = S0 + εS̄ for small ε > 0. With this matrix, we

associate

λ(Sε) = min
x∈Σ

(M(Sε)x, x),

which is a function of ε. Since S0 is a maximum point of λ(S), we always have λ(Sε) ≤
λ(S0) ; therefore, the right derivative (as ε → 0+)

d

dε
λ(Sε) ≤ 0. Let us calculate this

derivative.

Recall that if ϕ(ε) = minx∈K Φ(ε, x), where K is a compact set and Φ is a smooth

function, then

ϕ′(0+) = min
x∈K0

Φ′ε(0, x),

where K0 = Arg min Φ(0, x) | x ∈ K.
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In our case, Φ(ε, x) = (M(Sε)x, x), Arg min{Φ(0, x)|x ∈ Σ} = Γ0 ∩ Σ, and, according

to (54), Φ′ε(0, x) = −2(Rx, S̄x). Therefore,

d

dε
λ(Sε)

∣∣∣∣
ε=0+

= ϕ′(0+) = min
x∈Γ0∩Σ

(−2Rx, S̄x) ≤ 0,

which is equivalent to (55). ¤

Thus, (55) is established. By Lemma 7, there exists a nonzero subspace Γ ⊂ Γ0 such

that for any symmetric matrix S̄ ,

(56) max
x∈Γ∩Σ

(Rx, S̄x) ≥ 0,

and, moreover, R Γ ⊂ Γ . This implies that one can pass to the restriction of R to the

subspace Γ, i.e., to the operator R : Γ → Γ, and the inequality (56) holds for any S̄ that

is symmetric on this subspace. Then, by Lemma 6, the operator R restricted on Γ has an

eigenvalue λ = iω with zero real part.

The latter means that in the subspace Γ , there exists a nonzero solution of the equation

ẋ = −Rx, and the first square in (46) at this solution is equal to zero by definition. (Recall

that R = S0 + V.) If ω = 0 , then this solution is x(t) ≡ x0 ∈ Γ; if ω 6= 0 , then this

solution is x(t) = f sinωt + h cosωt, where f, h ∈ Γ. Since (Mx, x) = λ0 < 0 on the

subspace Γ0 (the more so on Γ ), at any of these solutions one can accumulate an arbitrarily

large integral of the second term in (46). Now, repeating the arguments from the proof of

Theorem 1, we obtain a compactly supported x̂(t) at which J(x̂) < 0. Theorem 3 is

proved. ¤

Conclusions. In this paper, we have considered the simplest nontrivial case of a quadratic

functional with the degenerate Legendre condition by transforming it into a functional with

“good” coefficients but on the semiaxis [0,∞). On the semiaxis (to be more precise, on

the spaces of infinite measure), the integral functionals qualitatively differ in their properties

from the integral functionals on closed intervals (i.e., on the spaces of finite measure); they

still have a singularity. This is related to the fact that the integral operators on the spaces

of infinite measure are not completely continuous in general.

We have succeeded in obtaining exact formulas for the nonnegativity of the examined

functional only in the two-dimensional case. Even for the three-dimensional case, this question

remains open.
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