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Abstract

The property of so-called uniform covering is proved for a family of linear op-

erators generated by a di�erential equation linear with respect to functional

parameters. Using this fact, a uniform estimate of the distance to the level set

of a nonlinear operator is obtained on a broader set than a neighborhood of the

examined point in a Banach space. This allows to prove an approximation the-

orem for a system with sliding mode controls and endpoint state constraints.
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1. COVERING FOR A FAMILY OF LINEAR OPERATORS

Consider a Banach space W = AC(m)
� (Lr

1
)N on an interval [0,T] with elements

�x 2 AC(m) (absolute continuous m� vector functions) and �u = (�u1; : : : ; �uN) (each

�ui 2 Lr
1
). For any �w = (�x; �u) we set jj �wjj = j�x(0)j + jj _�xjj1 +

P
jj�uijj1 . Denote

Z = Lm1 �IR
s; and let for any � = (�1; : : : ; �M) 2 LM

1
and any � = (�1; : : : ; �N) 2 LN

1

be given a linear operator P [�; �] :W �! Z; acting as follows: (�x; �u) 7! (��; ��); where

_�x�
MX
1

�i(t)Ai(t) �x�
NX
1

�j(t)Bj(t) �uj = �� 2 Lm1 ;
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K0 �x(0) +KT �x(T ) = �� 2 IRs: (1)

Here, Ai; Bj are measurable essentially bounded matrices, K0 and KT are con-

stant s � m -matrices. We assume that the pair (�; �) belongs to a bounded set

S � LM+N
1

: Fix a pair (�0; �0) 2 S; where �0 = (�1
0; : : : ; �

M

0 ) and �0 = (�1
0; : : : �

N

0 ):

Theorem 1. Let the pair (�0; �0) be such that the operator P [�0; �0] is onto.

Then there exists a weak-* neighborhood V[�0; �0] of this pair and a constant c > 0

such that, for any pair (�; �) 2 V[�0; �0] \ S; the operator P [�; �] is c� covering,

i.e.,

P [�; �] (DW

1 ) � DZ

c
; (2)

where DW

�
is the closed ball of radius � in the space W centered at the origin.

Proof. To simplify notation, we will write
P
�iAi�x = �A �x and

P
�jBj�uj =

�B �u; where A and B are some 3-rank tensors, and �u 2 (Lr
1
)N :

Since the space L1 is separable and the set S is bounded, the weak-* topology

on S is metrizable. Then, supposing that the assertion of the theorem is not true,

there exists a sequence (�n; �n)
wk-*
�! (�0; �0) and numbers �n ! 0+ such that 8n

the image set P [�n; �n] (D
W

1 ) does not contain the ball DZ

�n=2
. (Here the subscript

n indicates the number of the term in the sequence, not the component of the vector

� nor �:) Since these image sets are convex, there exist linear functionals ( n; �n)

from the conjugate space Z�; i.e.,  n 2 Lm
1

= (Lm1 )
� and �n 2 IRs; such that

jj njj+ j�nj = 1; and

( n; �n) (P [�n; �n] (D
W

1 )) � �n ! 0: (3)

The last relation means that 8 (�x; �u) 2 W with jj�xjjAC + jj�ujj1 � 1; the following

inequality holds:

Z
T

0
 n(t) ( _�x� �n(t)A(t) �x� �n(t)B(t) �u) dt+

+ �n(K0 �x(0) +KT �x(T )) � �n ! 0: (4)

Let us analyze the obtained relation (4).

Set �x = 0: Then we have

sup
jj�ujj1�1

Z
T

0
( n�nB(t) �u) dt � �n ! 0;

whence obviously

jj n�nBjj1 ! 0: (5)
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Now, set �u = 0: Then

sup
jj�xjj

AC
�1

[

Z
T

0
 n(t) ( _�x� �n(t)A(t) �x) dt+

+ �n(K0 �x(0) +KT �x(T ))] � �n ! 0: (6)

Take an m� vector function 'n(t) satisfying the equation

_'n = � n�nA(t); 'n(T ) = ��nKT : (7)

Then, Z
T

0
�( n�nA) �xdt =

Z
T

0
_'n�x dt =

= 'n�x j
T

0 �

Z
T

0
'n _�x dt;

hence (6) can be rewritten as

sup
jj�xjj

AC
�1

[

Z
T

0
( n � 'n) _�x dt + (�nK0 � 'n(0)) �x(0)] � �n ! 0: (8)

But, here the variables _�x 2 Lm1 and �x(0) 2 IRm can be chosen independently of

each other, whence (setting each of them to zero in turn) we get

jj n � 'njj1 ! 0; (9)

and

j�nK0 � 'n(0) j ! 0: (10)

From (9) we have  n = 'n + �n; where jj�njj1 ! 0; and, in view of (7),

_'n = �'n�nA(t) + �n; jj�njj1 ! 0: (11)

Without loss of generality, we assume �n ! �0 for some �0: Then, (7) implies that

'n(T ) ! ��0KT : Since equation (11) is linear w.r.t. �n; and �n
wk-*
�! �0; in this

case, as is well known, 'n uniformly converge to the solution of the equation

_'0 = �'0�0A(t); '0(T ) = ��0KT ; (12)

i.e., 'n = '0 + ~'n; where jj ~'njj1 ! 0: Thus,  n = '0 + ( ~'n + �n); where jj ~'n +

�njj1 ! 0; and �n ! �o: Therefore,

jj'0jj1 + j�0j = 1: (13)

Besides, we can replace in (6)  n by '0 and �n by �0; and then replace �n by its

weak-* limit �0: As a result we obtain that

Z
T

0
'0 ( _�x� �0A �x) dt + �0(K0 �x(0) +KT �x(T )) = 0 (14)
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for any �x 2 AC(m):

Further, from (5) we get jj'0�nBjj1 ! 0; hence
R
'0�nB �u dt ! 0 for any

�u 2 (Lr
1
)N ; and, since �n

wk-*
�! �0; we have

Z
T

0
'0�0B �u dt =

Z
T

0

NX
1

'0�
j

0B
j �uj dt = 0 (15)

(whence, dropping again �u; we get '0�0B = 0):

Relations (14) and (15) together with normalization (13) mean that Im P [�0; �0]

lies in a proper subspace of Z de�ned by the equation ('0; ��) + (�0; ��) = 0; which

contradicts the surjectivity of P [�0; �0]: Theorem 1 is proved. 2

A slight modi�cation of the given proof allows one to obtain a similar theorem for

the case when the space Z consists of three components: Z = Lm1 � IRs
� (Lq

1
)N ;

and the additional component of the operator P [�; �] acts as follows:

(�x; �u) 7! f�j(t) �x+Hj(t) �u
j = ��j 2 Lq

1
; j = 1; : : : ; Ng; (16)

where the matrices �j and Hj of corresponding dimensions are measurable and es-

sentially bounded, and all Hj(t) have uniformly full rank, i.e., they have essentially

bounded right inverse matrices H+
j (t) : Hj(t)H

+
j (t) = I { the identity q�q�matrix.

An equivalent requirement: det (Hj(t)H
�

j
(t)) � const > 0: The corresponding ver-

sion of Theorem 1 for this case we denote by Theorem 10 .

2. COVERING FOR THE DERIVATIVE OF A SYSTEM

WITH SLIDING MODES

Consider now the following control system (involving the so-called sliding modes):

_x�
NX
1

�i(t)f(x; ui; t) = 0;

K(x(0); x(T )) = 0; (17)

g(x; ui; t) = 0; i = 1; : : : ; N;

NX
1

�i(t)� 1 = 0:

Here x 2 AC(m)[0; T ]; all ui 2 Lr
1
; �i 2 L1

1
; the function K is de�ned and

smooth on IR2m; the functions f; g with all their �rst order derivatives w.r.t. x; u

are measurable in t; equicontinuous in (x; u) for all t 2 [0; T ]; and bounded for all

bounded x(t); u(t): Denote for brevity the pair (x(0); x(T )) = �:
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The left hand sides of equalities (17) de�ne a nonlinear operator F (x; u; �) that

acts from the space W = AC(m)
� (Lr

1
)N � LN

1
into Z = Lm1 � IRs

� (Lq
1
)N � L1;

with the derivative F 0(x; u; �) = P [x; u; �] : W �! Z acting as follows: (�x; �u; ��) 7!

(��; ��; ��; ��); where

_�x�
X

�if 0
x
(x; ui; t)�x�

X
�if 0

u
(x; ui; t)�ui �

X
��if(x; ui; t) = ��;

K 0

x(0)(�) �x(0) +K 0

x(T )(�) �x(T ) = ��; (18)

g0
x
(x; ui; t)�x+ g0

u
(x; ui; t)�ui = ��i; i = 1; : : : ; N;
X

��i(t) = ��:

Let us �rst establish the following property that might be of intrinsic interest.

Lemma 1. Let an operator A : C(m)
� Lr

1
! Lq

1
acting by the rule

(�x; �u) 7! �(t)�x+H(t)�u = �� 2 Lq
1
;

where � and H are measurable essentially bounded matrices, be onto. Then, the

matrix H(t) satis�es the above uniform full rank condition, i.e., has an essentially

bounded right inverse.

Proof. Consider �rst the case m = r = q = 1; i.e., when

A(�x; �u) = '(t)�x+ h(t)�u 2 L1[0; T ]:

Since A is onto, we have

A (DC

1 �DL1

1 ) � DL1

a
(19)

for some a > 0: We have to prove that vraimin jh(t)j > 0: Suppose, on the contrary,

that vraimin jh(t)j = 0: Then jh(t)j � a=3 a.e. on a set E of positive measure. By

the Lusin's C� property, E contains a closed set M of positive measure on which

the function '(t) is continuous. Let us restrict the spaces C and L1 to this set M:

Obviously, inclusion (19) still holds for these restricted spaces.

Take any discontinuous function �̂ 2 L1(M) with jj�̂jj1 � a having the oscillation

> a at some point � 2 M (hence, � is not isolated in M ). The ball Da=3(�̂)

obviously contains only discontinuous functions (because their oscillations at � are

greater than a=3 ), therefore it has no common points with the set

Z = f �z(t) = '(t)�x(t) j �x 2 C(M); jj�xjjC � 1g;

because the last one consists of continuous functions. However, from (19) we have

�̂ = �z + h(t)�u for some �z 2 Z; jj�ujj1 � 1;
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whence jj�z � �̂jj1 � jjhujj1 � a=3; and thus �z 2 Da=3(�̂); a contradiction.

The general case can be reduced to the one-dimensional. We leave it as an exercise

to the reader. The lemma is proved.

Now we get back to the operator P [x; u; �] given by formulas (18).

Theorem 2. Let a triple w0 = (x0; u0; �0) be such that the linear operator P [w0]

is onto. Then for any bounded set S � LN
1

there exist numbers b > 0; " > 0 and a

weak-* neighborhood V (�0) possessing the property:

for any triple (x; u; �) 2 W with

jjx� x0jjC < "; jju� u0jj1 < "; (20)

and � 2 V (�0) \ S; (21)

the operator P [x; u; �] is b� covering, i.e.,

P [x; u; �] (DW

1 ) � DZ

b
:

Proof. Consider the operator ~P [�] = P [x0; u0; �] for the �xed (x0; u0) and ar-

bitrary � 2 S: By Lemma 1, the matrices Hj(t) = g0
u
(x0(t); u

j

0(t); t) satisfy the

above uniform full rank condition, and so, we are in the conditions of Theorem 10:

(Here M = N; all �i = �i; and ��i play the role of additional components of the

control.) By Theorem 10; 9 b > 0 and a weak-* neighborhood V (�0) such that

8� 2 V (�0)\S the operator ~P [�] is b� covering. But, since the functions f; g and

their derivatives are equicontinuous in (x; u) and the set S is bounded, the operators

~P [�] = P [x0; u0; �] and P [x; u; �] are close to each other in the operator norm if x; u

are uniformly close to x0; u0: Hence, 8 b0 < b; 9 " > 0 such that, for all x and u

satisfying (20), P [x; u; �] is b0� covering. Theorem 2 is proved.

3. COVERING OF NONLINEAR OPERATORS

Let us now pass from the covering of linear operator P to that of nonlinear operator

F: We will use here the following abstract

Theorem 3. (Dmitruk, Milyutin, Osmolovskii, 1980). Let W and Z be Banach

spaces, O an open set in W; let an operator F : O ! Z be strictly di�erentiable

at all points of a set 
 � O; and 9 b > 0 such that 8w 2 
 the operator F 0(w)

is b� covering. Then 8 b0 < b there exists an open set G � 
 such that F is

b0� covering on G; i.e., for any ball D
(w) � G; its image contains the corresponding

ball of radius b0
 :

F (D
(w)) � Db0
(F (w)):
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Also, we will use the following obvious

Lemma 2. Suppose an operator F : W ! Z is b� covering on an open set

G for some b > 0; there is given a bounded set 
 � G; and 9 � > 0 such that


 +D� � G: Let w0 2 
; and consider the level set

M = fw 2 G j F (w) = F (w0) g:

Then, there exists a constant L such that 8w 2 


dist (w;M) � L jjF (w)� F (w0)jj: (22)

This lemma, Theorems 2 and 3 imply the following assertion for our functional

space W and the operator F de�ned by the left hand sides of (17).

Corollary. Let a triple w0 = (x0; u0; �0) be such that F 0[w0] is onto. Then, for

some " > 0 and some weak-* neighborhood V (�0); estimate (22) holds for any triple

w satisfying (20), (21).

Now, let S be the set of functions taking their values in the standard simplex:

S = f� 2 LN
1
j �i(t) � 0;

X
�i(t) = 1g:

Denote by �� the weak-* topology in LN
1
.

Theorem 4. Let F (x0; u0; �0) = 0; the operator F 0(x0; u0; �0) be onto, and

suppose that

8 i; vrai min
t

�i0(t) > 0; i.e., �0 2 int S: (23)

Then, in any (C;L1; �
�)� neighborhood of the point (x0; u0; �0) there exists a point

(x; u; �) still satisfying the equality F (x; u; �) = 0; and such that 8 i the function

�i(t) takes only two values: 0 or 1 (i.e., all �i are characteristic functions �Ei of

some measurable sets Ei ).

Note that, if one de�nes the control u =
P
ui(t)�Ei(t); then the pair (x; u) will

satisfy, instead of (17), the usual system

_x� f(x; u; t) = 0;

K(x(0); x(T )) = 0; (24)

g(x; u; t) = 0;

that presents the conventional equality type constraints in optimal control problems.

It is just in the study of this system one obtains the extended (relaxed, convexi�ed)
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system (17). Theorem 4 allows thus to approximate a trajectory of the relaxed system

(17) involving sliding control modes by trajectories of the initial system (24) with

an ordinary control. This fact can be used in proving the Maximum Principle of

Pontryagin's type for optimal control problems with state and so-called regular mixed

constraints by passing to a system with sliding mode controls. For example, this is a

key point in the proofs given in (Chukanov, 1990) and (Dmitruk, 1993).

To prove Theorem 4, one should use the above Corollary, and then follow the

arguments of Sec. 5{7 in (Dmitruk, 1976).

ACKNOWLEDGEMENTS

This work was supported by the Russian Foundation for Basic Research, project

no. 00-15-96109.

REFERENCES

Dmitruk, A.V. (1976). The justi�cation of the sliding mode method to optimal control

problems with mixed constraints. Functional Analysis and Appl., 10, pp. 197{201.

Dmitruk, A.V., A.A. Milyutin, and N.P. Osmolovskii (1980). Lyusternik's theorem

and the theory of extrema. Russian Math. Surveys, 35, no. 6, pp. 11{51.

(Translated from uSPEHI MAT. NAUK, 1980, T. 35, N 6, S. 11{46).

Dmitruk, A.V. (1993). Maximum principle for a general optimal control problem

with state and regular mixed constraints. Computational Mathematics and Mod-

eling, 4, no. 4, pp. 364{377. (Translated from "oPTIMALXNOSTX UPRAWLQEMYH

DINAMI^ESKIH SISTEM", m., wniisi, 1990, WYP. 14, S. 26{42).

Chukanov, S.V. (1990). Maximum Principle for optimal control problems with integral

equations. In "nEOBHODIMOE USLOWIE W OPTIMALXNOM UPRAWLENII" ("Necessary

Condition in Optimal Control", in Russian), Ch. 6; Nauka: Moscow.

||||||||||||||||||||||||||||||{

This paper is published in "Nonlinear Control Systems 2001"

(ed. A.B.Kurzhanski and A.L.Fradkov), Elsevier, 2002, vol. 2, p. 1061-1064.

8


