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1 Introduction

Let F : X → Y be a mapping between Banach spaces X and Y. Having x0 ∈ X

and y0 = F (x0), consider the level set

M = { x ∈ X | F (x) = y0 } = F−1(y0).

An important question is to estimate dist (x,M) for all x from a neighborhood

of the point x0 . Historically, this question first arose in the theory of problems on

conditional extremum:

ϕ(x) → min, subject to F (x) = 0. (1)

For such problems, in this general setting, the first order necessary condition for a local

minimum (Lagrange multipliers rule) was proved by L.A.Lyusternik in his famous paper

[1] of 1934. In that paper he actually obtained the following result.

Theorem 1 (on the distance estimate to the level set). Suppose that F

is strictly differentiable at x0 and its derivative F ′(x0) maps X onto Y. Then

there exists a constant L such that in some neighborhood O(x0) of the point x0 the

following estimate holds:

dist (x,M) ≤ L ||F (x)− y0||, ∀ x ∈ O(x0). (2)

Recall that the mapping F : X → Y is strictly differentiable at x0 if there exists

a bounded linear operator A : X → Y such that ∀ ε > 0 there exists a neighborhood

U(x0) such that ∀x′, x′′ ∈ U(x0)

||F (x′′)− F (x′)− A(x′′ − x′)|| ≤ ε ||x′′ − x′||.
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The linear operator A is called the strict derivative of the mapping F at the point

x0 and is denoted by A = F ′(x0). Clearly, if F has at x0 a strict derivative

F ′(x0), then it is also its Fréchet derivative. On the other hand, if F has at x0 a

Fréchet derivative, then its strict differentiability is not guaranteed. However, if F

has a Fréchet derivative F ′(x) at each point in some neighborhood O(x0), and this

derivative is continuous at x0 w.r.t. x in the operator norm (i.e., ||F ′(x)−F ′(x0)|| →
0 as x → x0 ), then one can easily show that F ′(x0) is a strict derivative of F at

x0 .

Theorem 1 readily yields the following “theorem on the tangent subspace”, the one

often used in deriving necessary conditions for an extremum.

Recall that a vector h ∈ X is tangent to a set C ⊂ X at a point x0 ∈ C if

dist (x0 + εh, C) = o(ε) as ε → 0 + . The set of all such vectors (it is always a closed

cone) is denoted by Tx0 C.

Theorem 2 (Lyusternik). Let F ′(x0) be onto (the Lyusternik condition). Then

Tx0 M = ker F ′(x0), i.e., a vector x̄ is tangent to the level set M at x0 iff F ′(x0) x̄ =

0.

The inclusion ⊂ here is obvious, and it holds even without assumption about

surjectivity of F ′(x0). The reverse inclusion follows readily from the distance estimate

(2): if F ′(x0) x̄ = 0, then F (x0 + εx̄) = F (x0) + o(ε), and so

dist (x0 + εx̄,M) ≤ L ||F (x0 + εx̄)− F (x0)|| = o(ε).

2 Covering and metric regularity

Analyzing more thoroughly the proof in [1], one can see that, under the conditions of

Theorem 1, a stronger assertion actually holds.

Theorem 3 (on the distance estimate to variable level sets). Let the

conditions of Theorem 1 be fulfilled. Then there exist a constant L and neighbor-

hoods U(x0) and V (y0) (of the points x0 and y0 respectively) such that ∀ x ∈
U(x0), ∀ y ∈ V (y0)

dist (x, F−1(y)) ≤ L ||F (x)− y||. (3)

This property of the mapping F (noted by many researchers) has been recently

named metric regularity with constant L. One can easily see that it is equivalent to

the following property: there exist a number a > 0 and a neighborhood O(x0)

such that for any closed ball Br(x) ⊂ O(x0)

F (Br(x)) ⊃ Bar(F (x)). (4)
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The last property is called covering with (or openness at) linear rate a in the neigh-

borhood O(x0).

The equivalence of these two properties for an arbitrary continuous F means that,

first, if F covers in a neighborhood O(x0) with a rate a > 0, then for some neigh-

borhoods U(x0) and V (y0) it is metrically regular with the constant L = 1/a , and,

second, if F is metrically regular with a constant L for some neighborhoods U(x0)

and V (y0), then in some neighborhood O(x0) it covers with any rate a < 1/L .

In the simplest case when F : IR → IR is a scalar function of one variable, both

properties – covering and metric regularity in a neighborhood – mean that in this

neighborhood F ′(x) ≥ a, F ′(x) ≥ 1/L, and a = 1/L. A slight difference occurs in

the general case because the dist (x, F−1(y)) may be not attained.

The author’s opinion is that among these two properties, the more convenient for

application, i.e., for usage in concrete situations, is metric regularity (the distance

estimate to the level sets), whereas the more convenient to prove is covering.

Different versions and generalizations of Theorem 3 (including those for metric and

quasimetric spaces, for nonsmooth and set-valued mappings) were considered by many

authors. We do not give here a survey of this; see e.g. papers [5]–[10] which provide

a large number of references.

One of the most convenient and useful generalizations is the abstract version of

Lyusternik theorem proposed by A.A.Milyutin. (Note that Milyutin himself said that

he did not generalize the Lyusternik theorem, but only put it in a proper formulation,

purifying it from inessential details.) His formulation is as follows.

Let X be a complete metric space, Y be a vector space with a metric invariant

w.r.t. translation (e.g., a normed space), G be a set in X, and T : X → Y be a

mapping. (We denote the metrics in X and Y by the same letter d, and the ball

Br(x) is sometimes denoted by B(x, r). )

Definition 1. The mapping T covers on G with rate a > 0 if

∀Br(x) ⊂ G T (Br(x)) ⊃ Bar(T (x)). (5)

Now, let another mapping S : X → Y be also given.

Definition 2. The mapping S contracts on G with rate b ≥ 0 if

∀Br(x) ⊂ G S(Br(x)) ⊂ Bbr(S(x)). (6)

(Obviously, any such mapping is continuous on G. On the other hand, any mapping

b− Lipschitzian on G contracts on G with rate b. )

Theorem 4 (Milyutin, see [5]). Let T be continuous on G and cover on G

with a rate a > 0, and let S contract on G with a rate b < a. Then their sum

F = T + S covers on G with the rate a− b > 0.
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(The assumption of continuity of T can be weakened to the closedness of its graph

on G. In this case the graph of F on G is also closed.)

The proof is so important and at the same time transparent, that it worth to be

given here completely. Take any ball B(x0, ρ) ⊂ G. We must show that

F (B(x0, ρ)) ⊃ B(F (x0), (a− b)ρ).

Without loss of generality, assume that a = 1 and b < 1. Denote for brevity y0 =

F (x0), r = (1 − b)ρ. Take any ŷ ∈ B(y0, r). We have to show that ∃ x̂ ∈ B(x0, ρ)

such that F (x̂) = ŷ.

The point x̂ will be obtained as the limit of a sequence {xn}, which will be

generated now by a special iteration process.

At the beginning, we have the following situation:

T (x0) + S(x0) = y0 , (7)

and we need to obtain T (x̂) + S(x̂) = ŷ. Rewrite equation (7) in the form T (x0) =

y0 − S(x0) and use the 1-covering of mapping T. Since

d (ŷ − S(x0), y0 − S(x0)) = d (ŷ, y0) ≤ r,

and B(x0, r) ⊂ G, there exists x1 ∈ B(x0, r) such that T (x1) = ŷ − S(x0), i.e.,

T (x1) + S(x0) = ŷ . (8)

Now, replace here S(x0) by S(x1). Since the mapping S is b− contracting on the

ball B(x0, r), we have d(S(x1), S(x0)) ≤ br, and so

T (x1) + S(x1) = y1 , (9)

where d(ŷ, y1) ≤ br.

So, we moved from equation (7) for a “base” point x0 to equation (9) for a new

“base” point x1, where

d(x0, x1) ≤ r, d(ŷ, y1) ≤ br.

Consider now equation (9) and try to replace y1 by ŷ.

Since

r + br < r (1 + b + b2 + . . .) = r
1

1− b
= ρ,

the ball B(x1, br) is contained in the ball B(x0, ρ); hence the 1–covering of T and

b− contracting of S hold on B(x1, br). Then, by analogy with the preceding step,

there exists x2 ∈ B(x1, r), such that

T (x2) + S(x2) = y2 , d(ŷ, y2) ≤ b2r,
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and so on. Continuing this process infinitely, we obtain a sequence of points xn, yn

such that

F (xn) = T (xn) + S(xn) = yn , (10)

d(xn−1, xn) ≤ bn−1r, d(ŷ, yn) ≤ bnr. (11)

Moreover, we have

d(x0, xn) + bnr ≤ d(x0, x1) + d(x1, x2) + . . . + d(xn−1, xn) + bnr ≤

≤ r + br + . . . + bn−1r + bnr < r
1

1− b
= ρ, (12)

whence the ball B(xn, b
nr) is contained in the initial ball B(x0, ρ), which makes the

next step possible.

Consider the obtained sequence {xn} . The first inequality in (11) implies that it

is fundamental (i.e., a Cauchy sequence), and since X is complete, this sequence has

a limit x̂. By (12) we get d(x0, x̂) ≤ ρ, i.e., x̂ ∈ B(x0, ρ). The second inequality

in (11) implies that yn → ŷ, and then, from (10) and continuity of F on the initial

ball (or from the closedness of its graph) we get F (x̂) = ŷ, which is exactly what was

required. 2

The iteration process in this proof is much similar to that in the Newton method:

the role of derivative F ′, involved in the Newton method, is played in our case by the

mapping T, and the role of the small nonlinear residual is played by the mapping S.

The covering property of mapping T allows us to “solve” equation (8) with respect to

x1 , while the small additional term S knocks us off the desired goal ŷ. This abstract

Newton-like method is called the Lyusternik iteration process. Note however, that this

process does not completely coincide with the Newton method, because the mapping

T is not one-to-one in general, and therefore, equation (8) is not solved uniquely, in

contrast with the Newton method. So, the Lyusternik process is more general than

the Newton method. For example, the Lyusternik iteration process is actually used in

the standard proof of the Banach open mapping theorem, whereas the Newton method

cannot be used there.

Note by the way the following simple fact.

Lemma 1. If the space X is complete, T : X → Y is continuous and covers on

G ⊂ X with a rate a > 0, and G has nonempty interior, then Y is complete too.

(Thus, in Theorem 4 the space Y is also complete.)

Proof. By definition, the set G contains a ball Bε(x0) of radius ε > 0. Let

Tx0 = y0 . Since the metric in Y is invariant w.r.t. translation, it is enough to show

that the ball Baε/2(y0) is complete as a metric space in the metric of Y.
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Without loss of generality, assume that a = 1. Take any fundamental sequence

yn ∈ Bε/2(y0). It suffices to show that it has a limit point ŷ ∈ Bε/2(y0) (then all the

sequence yn → ŷ as well). Passing to a subsequence, we can assume that

∞∑

n=1

d(yn, yn+1) < ε/2 .

Let us show that this sequence has a limit in Bε/2(y0).

Denote rn = d(yn, yn+1). Since y1 ∈ B(y0, ε/2), and T covers with rate 1, there

exists x1 ∈ B(x0, ε/2) such that Tx1 = y1 .

Further, since d(x0, x1)+r1 < ε, then B(x1, r1) ⊂ Bε(x0), and by the 1-covering of

T (on G ) there exists x2 ∈ B(x1, r1) such that Tx2 = y2 . Continuing this process

to infinity, we obtain a sequence of points xn ∈ B(xn−1, rn−1) such that Txn = yn .

Moreover, we have d(xn, xn+1) ≤ rn , therefore

d(x0, xn+1) ≤ d(x0, x1) + d(x1, x2) + . . . + d(xn, xn+1) ≤

≤ ε

2
+ r1 + . . . + rn <

ε

2
+

ε

2
= ε,

and hence the sequence xn is fundamental in the ball Bε(x0). Since X is complete,

xn converges to a point x̂ ∈ Bε(x0). But then, from the continuity of T we get

yn = Txn → ŷ = T x̂,

and since all yn lie in the ball B(y0, ε/2), their limit ŷ lies in the same ball. Thus,

yn → ŷ ∈ B(y0, ε/2), Q.E.D. 2

The classical Lyusternik theorem (Theorem 3) easily follows from Theorem 4.

Represent F in the form

F (x) = F (x0) + F ′(x0)(x− x0) + S(x),

and set T (x) = F (x0) + F ′(x0)(x − x0). Since F ′(x0) is onto, by the Banach open

mapping theorem ∃ a > 0 such that F ′(x0) B1(0) ⊃ Ba(0), which implies that the

affine operator T covers with rate a on the whole space X. The strict differentiability

of F at x0 exactly means that ∀ ε > 0 the residual S is ε− Lipschitzian in some

neighborhood O(x0). Choosing ε < a, we get by Theorem 4 that F covers in O(x0)

with rate a− ε > 0, Q.E.D. 2

The following two features in Theorem 4 are important:

a) the covering rate of the resulting mapping F is given explicitly: a− b .

b) the covering of F is obtained on the same set G, not on a smaller set.

These features allows one to obtain the covering and distance estimates not just in

a small neighborhood of a given point (i.e., locally), but on a “large” set G (non-

locally), and moreover, to obtain these properties not for a given single mapping F,
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but uniformly for a family of mappings (and hence, to pass to perturbation stability of

these properties). We will turn to this issue a bit later. Now we give yet another gen-

eralization of Lyusternik theorem (close in the spirit to the recent notion of porosity).

Let X be a complete metric space, Y a metric space, F : X → Y, and G ⊂ X.

We say that a set A ⊂ Y is an ε− net for a set B ⊂ Y, if ∀ b ∈ B ∃ a ∈ A such

that d(a, b) ≤ ε .

Theorem 5 (Dmitruk, see [5]). Let there exist numbers a > b ≥ 0 such that

for any ball Bρ(x) ⊂ G the mapping F is continuous on this ball (or just has a closed

graph), and for r = (1− b/a)ρ the set F (Br(x)) is a br− net for the ball Bar(F (x)).

Then F covers on G with rate a− b .

Note that here we do not a priori have any covering mapping T and perturbing

additive S; all the time we have only one mapping F. Theorem 5 asserts that its

“almost covering” guarantees its real covering. Note also that Theorem 4 follows from

Theorem 5 (one should apply the last theorem to the mapping F = T + S. ) 1

Proof. The proof is similar to that of Theorem 4 with some alterations. As before,

set a = 1, r = (1−b)ρ, take any ŷ ∈ B(y0, r) and try to find x̂ ∈ B(x0, ρ) such that

F (x̂) = ŷ. Again, the point x̂ will be obtained as the limit of a sequence, generated

now by the following iteration process.

At the beginning, we now have the following situation:

F (x0) = y0 , d(y0 , ŷ) ≤ r. (13)

Since F (Br(x0)) is a br− net for the ball Bar(y0)), there exists x1 ∈ B(x0, r) such

that

F (x1) = y1 , d(y1 , ŷ) ≤ br. (14)

So, we moved from equation (13) for a “base” point x0 to equation (14) for a new

“base” point x1 . Since

d(x0 , x1) + br < r (1 + b + b2 + . . .) = r
1

1− b
= ρ,

the ball B(x1, br) is contained in the initial ball B(x0, ρ); hence we can iterate the

procedure: the image F (B(x1 , br)) is a b2r− net for the ball B(y1 , br)), and then

there exists x2 ∈ B(x1 , br), such that

F (x2) = y2 , d(y2 , ŷ) ≤ b2r, (15)

and so on. The remaining part of the proof repeats the proof of Theorem 4. 2

1The author, together with A.A. Milyutin and N.P. Osmolovskii, told Theorems 4, 5 and other
results of [5] to L.A. Lyusternik during one of his last visits to Mech.-Math. Department of Moscow
State University in 1980.
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A first simple and well known fact about uniform covering of a family of mappings

(or, in other words, the simplest fact about perturbation stability of covering) is given

by the following

Lemma 2. If a linear bounded operator F0 : X → Y between Banach spaces

X and Y is onto, then there exist constants ε > 0 and c > 0 such that any linear

operator F with ||F − F0|| < ε covers (on the whole space) with rate c .

Proof. Since F0 is onto, it covers with a rate a > 0, and then, for any ε < a

and any linear F with ||F−F0|| < ε we obtain by Theorem 4 that F = F0+(F−F0)

covers with rate a− ε. Taking ε = a/2 , we get c = a/2 . 2

As a practically useful corollary, we obtain the following

Theorem 6. Let X and Y be Banach spaces, and Fα : X → Y be linear

bounded operators, indexed by α from a topological space A. Suppose that for

some α0 ∈ A the operator Fα0 is onto, and ||Fα − Fα0|| → 0 as α → α0 . Then

there exist a neighborhood O(α0) and a constant c > 0, such that ∀α ∈ O(α0) the

operator Fα covers with rate c .

The proof follows from Lemma 2 and the fact that ∀ ε > 0 there exists a neigh-

borhood O(α0) such that ||Fα − Fα0|| < ε for all α ∈ O(α0) . 2

All the above is rather well known and given here just for completeness of exposition.

Let us now present a connection between the nonlocal covering (i.e., covering on a given

set G ) and the distance estimate to the level set of the mapping. We confine ourselves

to the fixed (zero) level as the most essential case.

Theorem 7. Let X be a complete metric space, Y a normed space, and a

mapping F : X → Y cover with rate a > 0 on a set G ⊂ X. Suppose that the set

M = { x ∈ G | F (x) = 0 } is nonempty.

Let a bounded set Ω ⊂ G and a number δ > 0 be such that Oδ(Ω) ⊂ G. Then

there exists a constant L such that ∀ x ∈ Ω the following estimate holds:

dist (x,M) ≤ L ||F (x)||. (16)

Proof. Take any point x ∈ G. From the a− covering of F it follows that, if the

ball

B(x, ||F (x)||/a) ⊂ G, (17)

then its image contains the ball B(F (x), ||F (x)||), which in turn obviously contains

zero, and therefore ∃x′ ∈ B(x, ||F (x)||/a) such that F (x′) = 0. Since this x′ ∈ M,

then

dist (x,M) ≤ d(x, x′) ≤ 1

a
||F (x)||. (18)

Consider now the set Ω with Oδ(Ω) ⊂ G. Take any point x ∈ Ω. Then Bδ(x) ⊂
G. If for this point ||F (x)|| < δa, then we have B(x, ||F (x)||/a) ⊂ Bδ(x) ⊂ G, so
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inclusion (17) and hence estimate (18) hold, i.e., the required estimate (16) holds with

L = 1/a .

If, on the contrary, ||F (x)|| ≥ δa, then, since M is nonempty, we take an arbitrary

point x0 ∈ M, and since Ω is bounded, Ω ⊂ B(x0, R) for some radius R, and hence

we obtain a trivial estimate

dist (x,M) ≤ d(x, x0) ≤ R =
R

δa
δa ≤ R

δa
||F (x)||,

i.e., in this case the estimate (16) holds with L = R/(δa) . It remains now to set

L = max { 1/a, R/(δa) }. 2

Now, a natural question arises: how to obtain a nonlocal covering? Let us pass to

this issue.

3 From the local to a nonlocal covering

The following assertion allows one to pass from the local covering (i.e., covering in a

neigborhood of a point) to the covering on a “macro” set.

Lemma 3. Let be given a complete metric space X, a normed space Y, a

mapping F : X → Y, and an open set G ⊂ X. Let a > 0 be such that ∀x ∈ G the

following property ( a− covering at the point x ) holds: ∀ ε > 0 ∃ δ ∈ (0, ε) such

that F (Bδ(x)) ⊃ Baδ(F (x)). Then F covers with this rate a on the whole set G .

Proof. Consider any ball Br(x0) ⊂ G, and set F (x0) = y0. We must show that

F (Br(x0)) ⊃ Bar(y0).

Take an arbitrary y1 ∈ Bar(y0). We have to show that ∃x1 ∈ Br(x0), for which

F (x1) = y1 . Consider the segment I = [y0, y1] with the parametrization

yt = y0 + t(y1 − y0), 0 ≤ t ≤ 1.

By this, the segment I is equipped with a linear order. In the product Br(x0) × I

define the set Q consisting of all pairs (x, y) for which F (x) = y and ρ(x0, x) ≤
1
a
ρ(y0, y) (the corresponding points y can be called “properly covered”). On the set

Q define the following partial order relation:

(x′, y′) ¹ (x′′, y′′), if y′ ≤ y′′ and ρ(x′, x′′) ≤ 1
a
ρ(y′, y′′).

(Its transitivity is obvious.) Since the segment I is compact, the space X is complete,

the ball Br(x0) is closed, and the mapping F is continuous, then any increasing

chain {(xα, yα)} w.r.t. this order has an upper bound. (Passing to a countable cofinal

subchain {(xαn , yαn)}, we obtain a fundamental sequence yαn , whence the sequence

xαn is fundamental too, and so we can take their limits.) Then, by the Zorn lemma,

Q contains a maximal element (x̂, ŷ). We claim that ŷ = y1 .
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Indeed, by the assumption of the lemma, for the point x̂ the a− covering of F

holds: there exist arbitrarily small δ > 0, such that the image of Bδ(x̂) contains

the ball Baδ(ŷ). If we suppose ŷ < y1, then one can take such a small δ > 0 that

a bit “farther” point y′ = ŷ + aδ(y1 − y0)/||y1 − y0|| still belongs to the segment

I. Then one obtains an x′ ∈ Bδ(x̂) such that F (x′) = y′. Since (x̂, ŷ) ∈ Q and

ρ(x′, x̂) ≤ 1
a
ρ(y′, ŷ), the pair (x′, y′) ∈ Q. Moreover, this pair is strictly greater than

the pair (x̂, ŷ), which contradicts the maximality of the last one.

Thus, the point (x̂, ŷ) ∈ Q is such that ŷ = y1, and then, by the definition of Q,

for x1 = x̂ we have F (x1) = y1 and ρ(x0, x1) ≤ 1
a
ρ(y0, y1), Q.E.D. 2

Replacing the assumption of a− covering at each point x in this lemma by a

stronger assumption of local a− covering, we get the following assertion, simpler in

formulation and quite enough for practical use.

Theorem 8. Suppose ∃ a > 0, such that any point x ∈ G has a neighborhood

O(x), in which F covers with rate a. Then F covers with this rate a on the whole

set G .

In the case when X is a Banach space, and the mapping F is differentiable, there is

a simple and efficient Lyusternik condition guaranteeing the local covering. Therefore,

we get the following result on “nonlocal” covering.

Lemma 4. Let X, Y be Banach spaces, and F : X → Y be strictly differen-

tiable on a set Ω ⊂ X. Let a > 0 be such that ∀x ∈ Ω the linear operator F ′(x)

covers with rate a. (We say in this case that Lyusternik condition holds uniformly on

Ω.) Then ∀ a′ < a there exists an open set G ⊃ Ω on which the nonlinear operator

F covers with rate a′ .

Proof. Take an arbitrary a′ < a. Let x ∈ Ω. By Theorem 3 there exists a

neighborhood O(x), on which F covers with rate a′. Define a set G =
⋃

x∈ΩO(x).

It is an open set, each point x of which has a neighborhood V (x) on which F covers

with rate a′. Hence, by Theorem 8 F covers with this rate a′ on the whole set G .

As a simple corollary of this lemma, we get the following

Theorem 9. Let F : X → Y be strictly differentiable on an open set G ⊂ X.

Let a > 0 be such that ∀x ∈ G the linear operator F ′(x) covers with rate a.

Then ∀ a′ < a the nonlinear operator F covers on G with rate a′ .

Note that Theorems 8 and 9 have a nonlocal character.

Now, the above question can be stated as follows: how a “broad” set G (bigger

than just a neighborhood) with a uniform covering can appear? The simplest case is

provided by the following “strengthened version” of the classical Lyusternik theorem

(Theorem 3).
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Let, as before, be given Banach spaces X, Y, and a mapping F : X → Y.

Theorem 10 [5]. Let X be equipped with another topology τ, weaker (in

the nonstrict sense) than its norm topology. Suppose that in some τ− neighborhood

Oτ (x0) of a point x0 the mapping F is strictly differentiable, and its derivative F ′(x)

is τ− continuous at x0 , i.e., ||F ′(x) − F ′(x0)|| → 0 as x → x0 w.r.t. τ. Suppose

also that F ′(x0) maps onto. Then in some τ− neighborhood V(x0) the mapping F

covers with some rate a > 0 .

Proof. Since F ′(x0) is onto, it covers with some a0 > 0. For any ε > 0, in

some Vτ (x0) we have ||F ′(x) − F ′(x0)|| < ε , hence the linear operator F ′(x) =

F ′(x0)+(F ′(x)−F ′(x0)) covers with rate a0− ε. Then, by Theorem 9 the nonlinear

F covers on this Vτ (x0) with rate a0 − 2ε > 0. 2

Note that the existence of a “broad” set G = Vτ (x0) in this theorem is proved, not

assumed! In fact, its existence is hidden in the assumption about τ− continuity of

F ′(x), but this assumption seems more natural than the direct existence of a required

Vτ (x0), and is more easy to verify; it can really hold in some cases.

Now we point out a class of operators having τ− continuous derivative with respect

to a weaker topology than the standard norm topology.

Example 1. Consider a mapping F : L∞ × L∞[0, T ] −→ L1[0, T ] of the form

(α, u) 7−→ α(t) f(t, u(t)), (19)

where for simplicity f and fu are continuous in (t, u). Its Fréchet derivative maps

as follows:

F ′(α, u)(ᾱ, ū) = ᾱ f(t, u) + α fu(t, u)ū,

and so ||F ′(α, u)− F ′(α0, u0)|| =

= sup
||ᾱ||∞≤1

||(f(t, u)− f(t, u0)) ᾱ||1 + sup
||ᾱ||∞≤1

||(α fu(t, u)− α0 fu(t, u0)) ū||1 . (20)

Define the topology τ generated by the norm ||α||1 + ||u||∞ in the space L∞ × L∞ ,

which obviously is weaker than the standard norm of this space. Let us show that if

||α − α0||1 + ||u − u0||∞ → 0, then the right hand side in (20) tends to zero. For the

first summand it is obvious, and for the second one it follows from the estimate

||(αfu(t, u)− α0fu(t, u0)) ū||1 ≤

≤ ||(αfu(t, u)− αfu(t, u0)) ū||1 + ||(αfu(t, u0)− α0fu(t, u0)) ū||1 ,

and therefore, supremum of this expression over ||ū||∞ ≤ 1 is estimated as

≤ ||α||1 · ||fu(t, u)− fu(t, u0)||∞ + ||α− α0||1 · ||fu(t, u0)||∞ → 0.

11



Thus, F ′(α, u) is continuous w.r.t. the norm ||α||1+||u||∞ . If one add to this mapping

F any linear operator A such that A + F ′(x0) is onto, then one gets an operator

satisfying the conditions of Theorem 10.

One can note that the key point in this example is that the family of linear operators

Pα : ū 7−→ α(t) fu(t, u0(t)) ū(t) (21)

continuously depends on α w.r.t. ||α||1 .

Let us try to weaken more the topology for the mapping (19). Namely, let α be

taken from a bounded set A ⊂ L∞ , and instead of the topology ||α||1 consider now

the weak-* topology for α (corresponding to the convergence on elements of L1 );

denote it by σ∗. Obviously σ∗ is weaker that ||α||1 . Thus, in the space L∞ × L∞
we now have a topology τ̃ , which is the product of σ∗− topology for α and ||u||∞
for u. However, F ′ is not continuous in this weakened topology, because the above

family (21) is not continuous with respect to weak-* convergence of α. Let us check

it.

Example 2. Consider the family of linear operators

Pα : L∞ −→ L1 , ū(t) 7−→ α(t) B(t)ū(t),

where the functional parameter α is taken from a bounded set A ⊂ L∞ , and B(t)

is a given function from L∞[0, T ] not identically zero. Assume for simplicity that

α0(t) ≡ 0 ∈ intA, and so Pα0 ≡ 0. Let α ∈ A and α
σ∗−→ 0. Then

||Pα|| = sup
||ū||∞≤1

∫ T

0
|αBu| dt =

∫ T

0
|αB| dt ,

and this value does not tend to zero, in general. For example, if one takes |α(t)| =

c = const > 0, then one obtains

||Pα|| = c
∫ T

0
|B(t) | dt = const > 0.

This effect can be seen even in a simpler situation.

Example 3. For the same α ∈ A and B(t) consider the family of linear func-

tionals

ϕα : L∞ −→ IR , ū 7−→
∫ T

0
α Bū dt . (22)

If α
σ∗−→ 0 and |α(t)| = c = const > 0, then

||ϕα|| = sup
||ū||∞≤1

|
∫ T

0
αBu dt| =

∫ T

0
|αB| dt = c

∫ T

0
|B| dt > 0,

i.e., ||ϕα|| does not tend to zero.

12



However, in spite of the lack of continuity of ϕα in the operator norm as α
σ∗−→ α0 ,

the uniform covering of ϕα for α in some σ∗− neighborhood O(α0) holds, if the

functional ϕα0 covers (i.e., if it is not zero). We prove this simple fact in the following

abstract setting.

Let A be a topological space, and ∀α ∈ A be given a linear operator Pα : X →
IRq from a Banach space to a finite-dimensional space.

Theorem 11. Let for some α0 ∈ A the operator Pα0 maps onto, and ∀x ∈ X

Pαx → Pα0x as α → α0 . (23)

Then there exist a neighborhood O(α0) and a constant c > 0, such that ∀α ∈ O(α0)

the operator Pα covers with rate c .

Proof. Since Pα0 is onto, there exists a subspace L ⊂ X of dimension q, such

that Pα0 L = IRq, and moreover, the restricted operator P̃α0 : L → IRq covers with

a rate c > 0. From (23) it follows that then the restricted operators P̃α : L → IRq

converge to P̃α0 in the operator norm, as α → α0 . Then, by Theorem 4 ∀ c′ <

c ∃O(α0) (or by Theorem 6 ∃ c′ > 0 and O(α0)) such that ∀α ∈ O(α0) the

operator P̃α covers with rate c′. The more so, then Pα covers with this rate c′. 2

Thus, if an operator depending on a parameter α maps into a finite-dimensional

space, then, to obtain its uniform covering for α from some neighborhood O(α0) one

does not need to require its continuity in the operator norm, it is sufficient to have its

convergence for each element of the space X.

In particular, functionals (22) with α ∈ L∞[0, T ] obviously satisfy condition (23)

w.r.t. σ∗− convergence.

4 Covering of a combined operator

Consider now the following important case of a combined operator. Let D : W → Y

and P : W → Z be linear operators between Banach spaces W and Y, Z. Define

a combined operator

G = (D, P ) : W → Y × Z, w 7→ (Dw, Pw).

The following lemma is useful for such operators.

Lemma 5. Suppose that D covers with a rate a > 0, the restriction of P to

L = ker D covers with a rate b > 0, and ||P || ≤ µ. Then the combined operator

G = (D, P ) covers with rate

c = c(a, b, µ) =
(
max

{
1

a

(
1 +

µ

b

)
,

1

b

})−1

. (24)
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The reverse assertion holds in the following form: If G covers with a rate c > 0, then

D and P |L cover with at least the same rate c, independently of ||P || .

In proving this it is more convenient to deal with the inverse constants. If a linear

operator covers with rate a > 0, we will say that it is regular with constant A = 1/a.

(Regularity with constant k, or k− regularity, means here that any element in the

image space with norm 1 has a preimage with norm ≤ k. This is almost the same

as the usual metric regularity.) Then the lemma asserts that if D is regular with

constant A, the restriction P |L is regular with constant B, and ||P || ≤ µ, then G

is regular with constant

C = max {A (1 + Bµ), B} . (25)

Proof. Let us take any element (y, z) ∈ Y × Z, ||y|| + ||z|| ≤ 1, and show that

it has a preimage with a suitable norm.

By the A− regularity of operator D, there is w′ ∈ W such that Dw′ = y, ||w′|| ≤
A||y||. Moreover, Pw′ = z′, where ||z′|| ≤ ||P || · ||w′|| ≤ µA ||y||.

However, we must obtain the equality Pw = z. Set z̄ = z−z′. By the B− regularity

of P on ker D, there is w̄ ∈ ker D such that Pw̄ = z̄, ||w̄|| ≤ B ||z̄||. Then

w = w′ + w̄ satisfies both the required equalities:

Dw = Dw′ + Dw̄ = y + 0 = y,

Pw = Pw′ + Pw̄ = z′ + z̄ = z.

It remains to estimate ||w||. Since

||w̄|| ≤ B ||z̄|| ≤ B (||z||+ ||z′||) ≤ B (||z||+ µA ||y||),
we get

||w|| ≤ ||w′||+ ||w̄|| ≤ A ||y||+ B (||z||+ µA ||y||) = A (1 + Bµ)||y||+ B ||z|| .

The maximum of the obtained expression over the set ||y||+ ||z|| ≤ 1 is equal to the

value (25), Q.E.D. 2

Again, what is important here is that the constant c depends only on the constants

a, b, µ, but not on the operators P, D themselves. This makes it possible to apply

this lemma for obtaining a uniform covering for a family of operators.

Lemma 6. If a family of linear operators Dα : W → Y covers with a common

rate a > 0, and a family of operators Pα : W → Z is uniformly bounded, ||Pα|| ≤ µ,

and ∀α the restriction of Pα to Lα = ker Dα covers with a common rate b > 0,

then the combined operator

Gα = (Dα, Pα) : W → Y × Z, w 7→ (Dαw, Pαw). (26)

covers with the common rate (24).
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Consider now the following question. Let be given linear operators Pα : W → Z,

where α runs through a topological space A, and let Lα be a family of subspaces in

W. How to obtain the uniform covering of a family of restricted operators Pα : Lα →
Z ? Assume that a point α0 ∈ A is given.

Lemma 7. Let H be a Banach space, on which are given linear operators Φα :

H → W, so that we have H
Φα−→ Lα

Pα−→ Z, with the following properties:

a) ||Φα|| ≤ R for some R ;

b) ∀α ∈ A, Φα H ⊂ Lα ;

c) Pα0Φα0 maps H onto Z ;

d) ||PαΦα − Pα0Φα0|| → 0 as α → α0 .

Then there exist a neighborhood O(α0) and a constant b > 0, such that ∀α ∈ O(α0)

the operator Pα covers on Lα with rate b .

It is easy to see that when a) holds and ||Pα − Pα0|| → 0, the condition d) is

equivalent to the condition

d’) ||Pα0 (Φα − Φα0)|| → 0 as α → α0 .

Proof. From conditions c) and d) it follows by Theorem 6 the existence of a

neighborhood O(α0) in which all PαΦα cover with a common rate c > 0, i.e.,

PαΦαB1 ⊃ Bc . In view of a), ΦαB1 ⊂ BR ∩ Lα , therefore Pα(BR ∩ Lα) ⊃ Bc , so

Pα covers with rate c/R . 2

In the case when the space Z is finite-dimensional, the conditions of Lemma 7 can

be simplified. As before, let be given operators Pα : W → Z and subspaces Lα ⊂ W.

Lemma 8. Suppose that Z = IRq,

e) ||Pα − Pα0|| → 0 as α → α0 ;

f) Pα0 maps Lα0 onto Z ; and moreover,

g) ∀ z ∈ Z there exists a mapping α 7→ wα ∈ Lα such that Pα0wα0 = z,

||wα|| ≤ const , and

Pαwα → Pα0wα0 as α → α0 . (27)

Then the assertion of Lemma 7 holds.

Assumption g) can be replaced by the following stronger assumption:

g’) ∀wα0 ∈ Lα0 there exists a mapping α 7→ wα ∈ Lα such that ||wα|| ≤ const ,

and Pαwα → Pα0wα0 as α → α0 .

Proof. Let us construct a mapping Φα satisfying properties a)–d). In view of

e) we change d) by d’), and so, the operators Pα : W → Z can be assumed not

depending on α.

15



For the given α0 choose a finite set wα0, 1 , . . . , wα0, q ∈ Lα0 , such that their images

{ P wα0, j = zα0, j } form a basis in IRq. (28)

This is possible in view of assumption f).

By condition g), ∀ j there exists a mapping α 7→ wα,j ∈ Lα such that

||wα ,j|| ≤ const , and (29)

P wα ,j → P wα0 ,j as α → α0 . (30)

Take the space H = IRq with elements h = (h1, . . . , hq), and ∀α ∈ A define the

mapping

Φα : H → W, Φα(h) =
∑

j

hj wα, j .

Now, let us check conditions a)–d) of Lemma 7. In view of (29), we have ||Φa|| ≤ const

too, so condition a) is fulfilled. Condition b) is fulfilled by construction. Due to (28),

condition c) is fulfilled too. It remains to check condition d’).

Since the operator PΦa maps from H = IRq, it suffices to check d’) on any basis

vector ej = (0, . . . , 0, 1, 0, . . . , 0) ∈ H, i.e., we must to check that ∀ j

(PΦa − PΦα0) ej → 0.

But this means that P wα ,j − P wα0 ,j → 0, which is really true due to (30), Q.E.D.

2

Lemmas 6–8 yield the following final results. Let, as before, ∀α ∈ A be given an

operator Gα of the form (26).

Theorem 12. Suppose that all operators Dα : W → Y, α ∈ A, cover with a

common rate a > 0, all Pα : W → Z are uniformly bounded: ||Pα|| ≤ µ, there is an

auxiliary Banach space H, on which there are given auxiliary operators Φα : H → W

with the properties: Im Φα ⊂ ker Dα , Pα0 Φα0 is onto, and ||PαΦα−Pα0Φα0|| → 0

as α → α0 . Then there exist a neighborhood O(α0) and a constant c > 0, such

that ∀α ∈ O(α0) the combined operator Gα covers with rate c .

In case of Z = IRq, we come to the following

Theorem 13. Suppose that all operators Dα : W → Y, α ∈ A, cover with a

common rate a > 0,

e) ||Pα − Pα0|| → 0 as α → α0 ;

f) Pα0 maps ker Dα0 onto Z ; and moreover,

g) ∀ z ∈ Z there exists a bounded mapping α 7→ wα ∈ ker Dα such that Pαwα →
Pα0wα0 = z as α → α0 . Then the assertion of Theorem 12 holds.

16



5 Application

Theorem 13 can be applied to the following specific operator, arising in the study of

control systems.

Let W = ACn × Ls
∞[0, T ], Y = Ln

1 [0, T ], Z = IRq, A be a bounded set in

LN
∞[0, T ] equipped with the weak-* topology, and ∀α ∈ A let be given a linear

operator (here we write the parameter α in the brackets)

G[α] : ACn × Ls
∞ → Ln

1 × IRq, w̄ = (x̄, ū) 7→ (ȳ, z̄),

ȳ = D[α](x̄, ū) = ˙̄x− (
N∑

1

αi Γi) x̄− (
N∑

1

αiΛi) ū, (31)

z̄ = P (x̄, ū) = K0 x̄(0) + KT x̄(T ), (32)

where dim x̄ = n, dim ū = s, and Γi(t), Λi(t) are measurable bounded matrices of

corresponding dimensions, K0 , KT are n× n− matrices. The operator P does not

depend on the functional parameter α.

Theorem 14. Suppose that G[α0] covers. Then there exist a weak-* neighbor-

hood V(α0) and a constant c > 0, such that ∀α ∈ V(α0) ∩ A the operator G[α]

covers with rate c .

Proof. Since here Z = IRq, it suffices to check the assumptions of Theorem 13.

Let us first show that our family of operators D[α] : W → Y covers with a common

rate a > 0. Indeed, for any α ∈ A and any ȳ ∈ L1 consider the solution x̄(t)

to equation (31) with ū(t) = 0 and x̄(0) = 0. Then ||x̄||∞ ≤ µ0 ||ȳ||1, where µ0

depends only on ||α||1 (and, naturally, on ||γi||∞ , ||Λi||∞ ), and hence, from the same

equation (31) we obtain the estimate || ˙̄x||1 ≤ µ1 ||ȳ||1 , which implies ||x̄||AC ≤ µ ||ȳ||1 ,

and therefore D[α] covers with rate a = 1/µ > 0.

Now, let us check the other assumptions. Assumption e) is fulfilled trivially, since

our P does not depend on α. Next, since G[α0] covers, then P : ker D[α0] → Z

covers with some a0 > 0 , so f) is fulfilled too.

Finally, let us check assumption g). Take an arbitrary w̄α0 = (x̄α0 , ūα0) ∈ ker D[α0].

For any α ∈ A construct w̄α = (x̄α, ūα) ∈ ker D[α] as follows. Set ūα(t) = ūα0(t),

and let x̄α(t) be the solution to equation

˙̄x− (
∑

αiΓi) x̄− (
∑

αiΛi) ūα0 = 0

with the initial condition x̄(0) = x̄α0(0). As is well known, since α comes linearly in

this equation, we have

||x̄a − x̄α0||∞ → 0 as α
σ∗−→ α0 .

Then, in particular, x̄a(T ) → x̄α0(T ), and hence P w̄a → P w̄α0 .
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Thus, all the assumptions of Theorem 13 are fulfilled, and so, the required V(α0)

and c > 0 do exist. 2

Remarks. 1) In [23] and [24] this theorem was proved by using the specificity of

operator G[α]. 2) The assertion of Theorem 14 remains valid if we replace the set

A ⊂ L∞ by a broader set A ⊂ L1 , and replace the weak-* topology in L∞ (with

respect to L1) by a weaker one — the weak topology in L1 (with respect to L∞
only). However, in the applications we met only the case α ∈ L∞ , but have not yet

met the more general case α ∈ L1 .

Theorem 14 allows to obtain a nonlocal covering of the following nonlinear operator.

Let now W = ACn×Ls
∞×LN

∞ with elements (x, u, α), where α = (α1, . . . , αN). As

before, let Y = Ln
1 , Z = IRq. Consider the operator

F : W → Y × Z, F (x, u, α) = (y, z), (33)

ẋ− f 0(x, u, t)−
N∑

i=1

αi(t) f i(x, u, t) = y, K(x(0), x(T )) = z,

where all f i and K are smooth functions of their arguments. Obviously, F has the

Fréchet derivative

F ′(x, u, α) = G[x, u, α] : W −→ Y × Z

acting as follows: (x̄, ū, ᾱ) 7→ (ȳ, z̄), where

˙̄x− (f 0
x(x, u, t) +

∑
αif ′x(x, u, t)) x̄ −

− (f 0
u(x, u, t) +

∑
αif i

u(x, u, t))) ūi −∑
ᾱi f i(x, u, t) = ȳ ∈ L1 ,

K ′
x(0)(x0, xT ) x̄(0) + K ′

x(T )(x0, xT ) x̄(T ) = z̄ ∈ IRq.





(34)

This derivative continuously depends on (x, u, α). Moreover, it is Lipschitz continuous

with respect to variations of (x, u) in the norm ||x||∞+ ||u||∞ uniformly over α from

any bounded set A ⊂ LN
∞ . The following theorem holds for the family of operators

G[x, u, α] .

Theorem 15. Suppose that a triple w0 = (x0, u0, α0) with α0 ∈ A is such that

the linear operator G[w0] is onto. Then there exist a weak-* neighborhood V(α0)

and numbers c > 0, ε > 0 such that for any triple (x, u, α) ∈ W satisfying the

conditions

||x− x0||∞ < ε, ||u− u0||∞ < ε, α ∈ V(α0) ∩ A, (35)

the linear operator G[x, u, α] covers with rate c .

Proof. First, we fix (x0 , u0) and consider the family of operators G̃[α] = G[x0, u0, α],

α ∈ A. Let us show that this family satisfies the conditions of Theorem 14. The argu-

ments ᾱi of G̃ should be regarded here as additional control variations (and could be
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denoted as ūs+i ). Then the operator G̃[α] has the above form (31), (32). Since G̃[α0]

is onto, all the conditions of Theorem 14 are fulfilled. By this theorem, there exists

a weak-* neighborhood V(α0) and a constant c > 0, such that ∀α ∈ V(α0) ∩ A
the operator G̃[α] = G[x0, u0, α] covers with rate c. But then, since the functions

f i, f i
x, f i

u and K ′ are continuous in (x, u), and the set A ⊂ L∞ is bounded, then

∀ δ > 0 we have ||G[x, u, α] − G[x0, u0, α]|| < δ uniformly for all α ∈ A, provided

that (x(t), u(t)) are uniformly close enough to (x0(t), u0(t)). Therefore, by Theo-

rem 4 ∀ c′ < c ∃ ε > 0 such that for any triple (x, u, α) satisfying (35) the operator

G[x, u, α] covers with rate c′. 2

From Theorems 15 and 9 we readily get the following

Theorem 16. Suppose that A is bounded and open, and F ′[w0] is onto. Then

there exist a weak-* neighborhood V(α0) and numbers c > 0, ε > 0 such that the

nonlinear operator F covers with rate c on the set (35).

Finally, this theorem and Theorem 7 yield the following nonlocal distance estimate

to the level set M = {w | F (w) = 0 } .

Theorem 17. Let A ⊂ LN
∞ be bounded, α0 ∈ A, and the triple w0 =

(x0, u0, α0) ∈ M be such that the derivative F ′[w0] is onto. Then there exists

a weak-* neighborhood V(α0) and numbers ε > 0, L such that for any triple

w = (x, u, α) ∈ W satisfying conditions (35), we have

dist (w, M) ≤ L ||F (w)|| . (36)

Proof. Let Ã be the 1-neighborhood of A in LN
∞ . By Theorem 16 ∃ c, ε > 0

and a weak-* neighborhood of zero V(0) ⊂ LN
∞ such that F covers with rate c on

the set

||x− x0||∞ < 2ε, ||u− u0||∞ < 2ε, α ∈ (α0 + 2V(0)) ∩ Ã .

Denote this set by G. Reduce, if necessary, ε > 0 so that ε < 1 and Bε(0) ⊂
V(0), and define the set Ω by conditions (35) with V(α0) = α0 + V(0). Then the

ε− neighborhood of Ω is contained in G, and hence, by Theorem 7, for some L the

estimate (36) holds on Ω. 2

6 A relaxation theorem

The obtained nonlocal estimate is essentially used in the proof of the following relax-

ation (or approximation) theorem.

Consider the following control system on a fixed time interval [0, T ] :

ẋ = f(x, u, t), K(x(0), x(T )) = 0, (37)
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where x ∈ ACn[0, T ], u ∈ Lr
∞[0, T ], dimK = q, and the functions f, K are

assumed smooth.

Along with system (37), consider also an extended (relaxed) system, obtained by

the convexification of its velocity set:

ẋ =
N∑

i=0

αi(t) f(x, ui, t), K(x(0), x(T )) = 0, (38)

where i = 0, 1, . . . , N, all ui ∈ Lr
∞ , all αi(t) ≥ 0, and

∑
αi(t) = 1. So, the vector

function ᾱ(t) = (α0, . . . , αN) ∈ LN+1
∞ takes its values in the simplex

A = { ᾱ ∈ IRN+1 | ∀ i αi ≥ 0,
N∑

i=0

αi = 1 }.

Denote, as usual, by exA the set of vertices of A; so, ᾱ ∈ exA means that ᾱ is a

basis vector ei for some i.

Obviously, the set of solutions to (38) is wider than that to (37) in the sense that

any solution x(t), u(t) to (37) can be also considered as a solution to (38) for the

extended collection of controls u0(t) = u(t), arbitrary u1(t), . . . , uN(t), and weight

coefficients ᾱ(t) = (1, 0, . . . , 0). However, the reverse inclusion is not so obvious, and

generally, it is not true.

So, the question is, when the passage to the extended system is valid, i.e., when

a given trajectory of system (38) can be approximated by trajectories of the initial

system (37)?

The first idea is, given a solution to system (38), fix the controls u0(t), u1(t), . . . , uN(t),

and consider a sequence of weight coefficients ᾱm(t) ∈ exA, such that ᾱm(t)
σ∗−→ ᾱ(t)

(which means that αi
m(t)

σ∗−→ αi(t) ∀ i = 0, 1, . . . , N). Then, setting xm(0) = x(0),

we get xm(t) −→ x(t) uniformly on [0, T ]. If the function K does not depend on

x(T ) (i.e., x(T ) is free), then, setting um(t) =
∑N

i=0 αi
m(t) ui

m(t), we get a sequence

of pairs (xm, um) satisfying system (38). (In engineering applications such a sequence

is called a sliding mode regime.) This is essentially the approach proposed a long time

ago by N.N.Bogolyubov (see [4]), L.C.Young [2], and E.J.McShane [3]; after the paper

of R.V.Gamkrelidze [11] it became a standard tool in control theory and was exploited

by many authors (to mention just a few of them, see e.g. [12] – [19]).

But in our case, when K depends on both endpoints of the trajectory, we have

an obstacle: generally, K(xm(0), xm(T )) 6= 0, so the pair (xm, um) does not satisfy

system (38)!

In order to overcome this obstacle, we proceed as follows. First, taking into account

that α0 = 1 −∑N
i=1 αi, it is convenient to rewrite the differential equation in (38) in

terms of “independent” coefficients α1, . . . , αN :

ẋ = f(x, u0, t) +
n∑

i=1

αi
(
f(x, ui, t)− f(x, u0, t)

)
.
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Then we define the Banach space W = ACn×(Lr
∞)N+1×LN

∞ with elements (x, u, α) :

x ∈ ACn, u = (u0, u1, . . . , uN) ∈ (Lr
∞)N+1, α = (α1, . . . , αN) ∈ LN

∞,

define the Banach spaces Y = Ln
1 , Z = IRq, and consider the operator

F : W → Y × Z, F (x, u, α) = (y, z),

where

ẋ− f(x, u0, t)−
n∑

i=1

αi
(
f(x, ui, t)− f(x, u0, t)

)
= y,

K (x(0), x(T )) = z,





(39)

so, the solution to system (38) is the zero set of operator F. This operator has the

above form (33) with s = r(N + 1) and f i(x, u, t) = f(x, ui, t)− f(x, u0, t). The set

A now consists of all α = (α1, . . . , αN) ∈ LN
∞ satisfying a.e. on [0, T ] the conditions:

αi(t) ≥ 0 ∀ i,
N∑

i=1

αi(t) ≤ 1.

(Note that if we leave all αi, i = 0, 1, . . . , N, then we should extend the operator F

by adding the third component:
∑N

i=0 αi(t)− 1 = y0. )

In the space W, along with its natural topology, generated by the norm ||w|| =

||x||AC +||u||∞+||α||∞ , we also define the (C, L∞, σ∗)− topology, which is the product

of C− norm topology for x, L∞− norm topology for u, and weak-* topology for

α.

As before, we consider the level set M = {w | F (w) = 0 }.

Theorem 18. Let a triple (x0, u0, α0) ∈ M satisfy the following two conditions:

a) F ′(x0, u0, α0) is onto (the Lyusternik condition);

b) α0 ∈ intA, i.e.,

∀ i αi
0(t) ≥ const > 0, and 1−∑N

i=1 αi
0(t) ≥ const > 0 a.e. on [0, T ] .

Then, in any (C, L∞, σ∗)− neighborhood of the triple (x0, u0, α0) there exists a triple

(x, u, α) still belonging to M and such that ∀ i the function αi(t) takes only two

values: 0 or 1.

In another words: there exists a sequence (xm, um, αm) such that

||xm − x0||C → 0, ||um − u0||∞ → 0, (αm − α0)
σ∗−→ 0,

and ∀m all αi
m(t) = 0 or 1 almost everywhere.

Assumption a) means in other words that the linearization of system (39), which

has the form (34), is controllable in the sense that each pair ȳ, z̄ in its right hand side

is attainable, or equivalently, that attainable are ȳ = 0 and each z̄ ∈ IRq.
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This theorem enables one to approximate a trajectory of the relaxed system (38)

involving sliding mode controls by trajectories of initial system (37) involving just

ordinary controls, in the following sense: constructing, as shown above, the controls

ũm(t) =
N∑

i=0

αi
m(t) ui

m(t), where α0
m(t) = 1−

N∑

i=1

αi
m(t)

(so, ᾱm(t) = (ᾱ0
m(t), . . . , ᾱN

m(t)) ∈ exA), we obtain a sequence (xm(t), ũm(t))

satisfying system (37).

The proof is based on a specific iteration process of corrections which allow us to

satisfy the equality K = 0 (see [20, Sec. 5–7], [24, Sec 5.4]).

Theorem 18 can be used in a proof of the Maximum Principle for the general optimal

control problem with state and regular mixed constraints by passing to a relaxed system

with sliding mode controls. The author learned this idea from A.Ja.Dubovitskii and

A.A.Milyutin, and realized it in [21] and [24, Ch. 4]. A similar theorem was proved

by S.V.Chukanov [22] for control systems with integral equations; he also applied it

to obtain the corresponding Maximum Principle.

Note in conclusion that this paper should be considered just as one among few steps

in the study and usage of nonlocal Lyusternik estimates. To our opinion, it would be

interesting to find a possibility of such estimates for other classes of operators, e.g., for

PDE operators.
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