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Abstract. The minimizing problem for the length of trajectories with respect to a submetric
on a distribution is considered. Quadratic sufficient conditions for the strong minimality of
abnormal trajectories of arbitrary length are obtained. The results hold for distributions of
arbitrary dimensions and for a broad class of submetrics, including those of sub-Riemannian
and sub-Finsler metrics.

INTRODUCTION

Let M be an open set in R
n, let k vector fields r0(x), . . . , rk−1(x), be given on M, and let

these fields be C2 smooth on M and linear independent at any point x ∈ M. These fields define a
k-dimensional distribution

Γ(x) = Lin {r0(x), . . . , rk−1(x)}
onM. A real function q(x, x̄) of x ∈ M and x̄ ∈ Γ(x) is called a submetric on Γ(x) if, for any chosen
x ∈ M, this function defines a positive sublinear functional of x̄. We assume that q is continuous
with respect to (x, x̄). In particular, if q2(x, x̄) = (Q(x)x̄, x̄) is a positive-definite quadratic form
of x̄ ∈ Γ(x), then q is called a sub-Riemannian metric, and Γ(x) together with q define a sub-
Riemannian structure on M. A more general case (which is still special) is related to a sub-Finsler
metric for which q(x,−x̄) = q(x, x̄).

Representing vectors x̄ ∈ Γ(x) in the form

x̄ =
∑
ui ri(x), u = (u0, . . . , uk−1) ∈ R

k,

we can define the function

ϕ(x, u) = q(x, x̄) = q(x,
∑
ui ri(x)).

Let us consider the absolutely continuous curves x(t) in M, t ∈ [0, T ], such that ẋ(t) ∈ Γ(x(t))
a.e. on [0, T]. These curves are said to be Γ-admissible, or simply admissible because Γ is the same
throughout the paper. These curves can also be defined as solutions of the differential equation

ẋ(t) =
∑
ui(t) ri(x(t)), (1)

where ui ∈ L1[0, T ], i = 0, . . . , k − 1. For any Γ-admissible curve, one can define its length by the
formula

J(x) =
∫ T

0

q(x, ẋ) dt

or, using the presentation (1), by the relation

J(x) =
∫ T

0

ϕ(x, u)dt.
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Now let x̂(t), t ∈ [0, T ], be a Γ-admissible curve joining two given points x̂(0) = p0 and
x̂(T ) = p1. The question is: What are necessary and sufficient conditions for this curve to have
minimal length among all admissible curves joining p0 and p1 and (in a sense) close to x̂(t)? This
question is the most difficult in the case of the so-called abnormal curves. As well as the related
question of the so-called rigidity, this problem has recently attracted the serious attention of experts,
and it is precisely the sufficient conditions that were mainly studied (see [1–7] and the references
therein). However, even the problem of sufficient minimality conditions is not solved completely.
Namely,

a) only the case of dimΓ = 2 was treated,
b) only sub-Riemannian metrics were considered,
c) there are no conditions for a strong minimum, in the sense of the classical calculus of variations

(CCV) (the “strong” minimum discussed in [6] is weaker than the classical strong minimum, and
in fact it is the so-called Pontryagin minimum; see below and, e.g., [7, 10–14]),

d) the sufficient conditions in [1, 4, 5] guarantee the minimality only for small pieces of a curve,
e) the sufficient conditions in [6] are very restrictive and can be weakened.

Although the minimum problem for lengths is a special case of an extremal problem, we stress
that the known minimality conditions, except for Pontryagin’s maximum principle (PMP), are
not applications of general theory to this special problem but follow from ad hoc theories and
considerations. We approach this problem by using the theory of quadratic conditions for local
minimum for singular extremals in optimal control problems (this theory was developed by Milyutin
[8] and the author [9–14]), and our results are stronger and more general than the previously known
ones. In the present paper we discuss only su©cient minimality conditions.

BASIC NOTIONS AND ASSUMPTIONS

The problem of determining a curve minimizing length can be stated as an optimal control
problem on a fixed time interval [0, T] as follows.

Problem (Z):

ẋ = z
∑
ui ri(x), ż = 0, z > 0, x(0) = p0, x(T ) = p1,

ϕ(x, u) � 1, (2)

J = z(0) −→ min .

Here z is a positive constant bounding the velocity, ‖ẋ‖ � z · ϕ(x, u) � z, and the problem is to
come from p0 to p1 at a given time T with the minimal possible upper bound of the speed. Note
that, in general, Problem (Z) includes the mixed state-control constraint (2), i.e., the admissible
control set depends on x: U(x) = {u | ϕ(x, u) � 1}. For sub-Riemannian metrics this constraint
can be reduced (in an appropriate basis) to the form |u| � 1, and thus Problem (Z) becomes a
classical optimal control problem of Pontryagin type.

Let ŵ = (ẑ, x̂, û) be an admissible trajectory of Problem (Z). According to CCV, the trajectory
ŵ is called a point of the weak minimum (or a weak minimizer) of Problem (Z) if it is a point of
local minimum with respect to the norm ‖w‖ = |z| + ‖x‖C + ‖u‖∞ , and ŵ is called a point of
strong minimum (or a strong minimizer) of Problem (Z) if it is a point of local minimum with
respect to the seminorm given by ‖w‖′ = |z|+ ‖x‖C for arbitrary u.

Throughout the paper we assume that a trajectory x̂(t) under consideration satisfies the following
condition.

Assumption A1. The curve x̂(t), t ∈ [0, T ], is C3 smooth with nonzero derivative and without
self-intersections.

In fact, the last requirement is unessential because one can readily get rid of it, but we admit it
here for simplicity. (In [1–6] it is actually assumed that the curve under consideration is C∞-smooth.
However, we do not concentrate on weakening of the smoothness assumptions.)

Denote by χ̂ the image of the curve x̂(t), t ∈ [0, T ], in the space R
n.
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Proposition. A trajectory ŵ is a strong minimizer of Problem (Z) if and only if the correspon-
ding curve x̂(t) has minimal length among all admissible curves x(t) joining p0 and p1 and lying
in a neighborhood of the set χ̂.

This means that the notion of strong minimum in Problem (Z) agrees with geometric sense.

Definition 1. The trajectory ŵ is said to be abnormal if there exists a Lipschitzian n-vector
function (more precisely, an n-covector function) ψ(t) such that

−ψ̇ = ẑ ψ
k−1∑
i=0

ûi r
′
i(x̂), t ∈ [0, T ], (3)

ψ(t) ri(x̂(t)) = 0, t ∈ [0, T ], i = 0, 1, . . . , k − 1, i.e., ψ(t) ⊥ Γ(x̂(t)); (4)

ψ is said to be an adjoint or costate variable. (The prime at a function stands for the derivative of
this function with respect to x unless otherwise stated. Given an n-covector ψ and an n-vector r,
the expression (ψ, r) or simply ψr denotes the value of the linear functional ψ at r.)

The set of all functions ψ(t), satisfying (3) and (4) and normalized by the condition |ψ(0)| = 1
is denoted by Ψ0 = Ψ0(ŵ). Thus, ŵ is abnormal if and only if Ψ0(ŵ) is nonempty. The abnormal
trajectories obviously satisfy PMP (which we do not write out here). The set Ψ0(ŵ) does not
depend on the choice of the submetric and, according to [7], on the choice of a basis in Γ(x).

Definition 2. An abnormal trajectory ŵ is said to be strictly abnormal, or singular, if it satisfies
PMP for ψ ∈ Ψ0(ŵ) only. The trajectories satisfying PMP and such that Ψ0(ŵ) = ∅ are said to
be normal stationary trajectories.

For normal trajectories, the problem of their strong minimality is rather simple because, in this
case, the second variation of the Lagrange function contains ϕ′′uu(x̂, û), and, under the conventional
assumption that this matrix is positive definite on the subspace ϕ′u(x̂, û) ū = 0, one can use the
known conditions of CCV (cf. [1] for sub-Riemannian metrics). The problem is much more difficult
for abnormal trajectories, which we study in this paper.

We admit some assumptions on the submetric.

Definition 3. We say that a submetric q(x, x̄) has a C2 smooth (hyper-) plane of support in a
neighborhood of the curve x̂(t) if in a neighborhood of χ̂ there exist a C2 smooth (k−1)-dimensional
subspace Γ0(x) ⊂ Γ(x) and a C2 smooth nonzero vector field r0(x) ∈ Γ(x) such that the affine
hyperplane r0(x) + Γ0(x) and the relative interior of the hodograph

F (x) = {x̄ ∈ Γ(x) | q(x, x̄) � q(x, r0(x)) },

are disjoint, and r0(x̂(t)) = ˙̂x(t) for all t.

By using a basis in Γ(x), this property can be reformulated as follows: in a neighborhood of χ̂,
there exist C2smooth nonzero vector functions l(x), v(x) ∈ R

k such that, if u ∈ R
k and ϕ(x, u) �

ϕ(x, v(x)), then (l(x), u) � (l(x), v(x)), and v(x̂(t)) = û(t) for all t.
We can readily see that any C3 smooth metric q on M × R

n (for x̄ 
= 0) and any C2 smooth
Riemannian metric restricted on any C2 smooth distribution Γ(x) have a C2 smooth plane of
support in a neighborhood of any admissible curve x̂(t) satisfying Assumption A1. Below we omit
the words “C2 smooth” for brevity.

Definition 4. A hyperplane of support Γ0(x) in a neighborhood of x̂(t) is said to be strict if,
for any x in a neighborhood of χ̂, the affine hyperplane r0(x) + Γ0(x) has the unique common
point r0(x) with the hodograph F (x).

Obviously, if a submetric is strictly convex (i.e., for any x, the sublinear functional q(x, x̄)
is strictly convex with respect to x̄), then any hyperplane of support is automatically strict. In
particular, this is the case for any sub-Riemannian metric.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 6 No. 3 1999



366 A. V. DMITRUK

Assumption A2. The submetric q has a C2 smooth strict hyperplane of support in a neigh-
borhood of x̂(t).

Note that the validity of this assumption does not depend on the choice of a parametrization of
the curve x̂. Any sub-Riemannian metric satisfies Assumption A2.

We take ϕ(x̂, û) = 1 on [0,T] (otherwise one can reparametrize x̂ and reduce z, and hence ŵ
cannot be optimal) and ẑ = 1, so that T is the length of the curve x̂. Now let us choose a special
basis in Γ(x).

Definition 5. Following [7], a basis in Γ(x) is said to be adjoint for the trajectory x̂(t) if
r0(x̂(t)) = ˙̂x(t) on [0, T ].

In PZ written in the adjoint basis, the reference control is û = (1, 0, . . . , 0).The state components
ẑ ≡ 1 and x̂(t) do not depend on the choice of a basis in Γ(x).

The adjoint equation (3) in the adjoint basis becomes

ψ̇(t) = −ψ(t) r′0(x̂(t)) . (5)

Along with Problem (Z), we consider the following System (R) in the adjoint basis:

ẋ = z r0(x) +
k−1∑
i=1

ui ri(x), ż = 0, t ∈ [0, T ], x(0) = p0, x(T ) = p1. (6)

This differs from Problem (Z) on the following points: the cost functional J is absent, only the term
with i = 0 is multiplied by z, and it is assumed that u0 = 1 and the other controls ui are free. The
number of controls becomes equal to k − 1. The submetric q does not enter System (R).

This system appears in the study of the rigidity of the curve x̂(t) in the class of all admissible
curves joining the points p0 and p1 [7]. Namely, x̂ is rigid if and only if the triple ŵ = (ẑ, x̂, û) is
isolated in the set of all trajectoriesof System (R) with respect to the norm

‖w‖ = |z|+ ‖x‖C + ‖u‖∞.

The abnormality of ŵ in Problem (Z) can be treated as the absence of controllability in System
(R) at ŵ, so that Ψ0(ŵ) is nonempty if and only if the problem is not controllable. For System (R),
this set was investigated by Milyutin in [7].

SECOND VARIATIONS ON THE CRITICAL SUBSPACE

For any function ψ(t), let us consider the Lagrange function for System (R),

Φ[ψ](z, x, u) = ψ0 x0 − ψT xT +
∫ T

0

ψ
(
ẋ − z r0(x) −

k−1∑
i=1

ui ri(x)
)
dt

and a half of its second variation at ŵ, Ω [ψ](w̄), which must be considered on the subspace K of
critical variations w̄ = (z̄, x̄, ū),

˙̄x = z̄ r0(x̂) + r′0(x̂) x̄ +
k−1∑
i=1

ūi ri(x̂), ˙̄z = 0, x̄(0) = 0, x̄(T ) = 0. (7)

It is convenient to pass from the variables w̄ = (z̄, x̄, ū) to (z̄, ξ̄, ȳ, ū), which we denote by the same
letter w̄, where

ȳ = (ȳ1, . . . , ȳk−1), ū = (ū1, . . . , ūk−1), ˙̄y = ū, ȳ(0) = 0, ξ̄ = x̄−
k−1∑
j=1

ȳj rj(x̂)
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(the known Goh transformation), and hence the critical subspace consists of all w̄ = (z̄, ξ̄, ȳ, ū)
satisfying the relations

˙̄ξ = z̄ r0(x̂) + r′0(x̂) ξ̄ +
k−1∑
j=1

ȳj [r0, rj], (8)

ξ̄(0) = 0, ξ̄(T ) +
∑
ȳj(T ) rj(x̂(T )) = 0, ˙̄y = ū, ȳ(0) = 0. (9)

(Here and below [f, g] = f ′g − g′f are Lie brackets, the derivatives are evaluated along x̂(t), and
the expressions r′0(x̂) ξ̄ and (r′′0 (x̂) ξ̄, ξ̄) stand for the first and second differentials of the mapping
r0 at the point x̂(t) in the direction ξ̄(t), respectively.)

Under this transformation, the second variation Ω [ψ](w̄) becomes [7, 14]

Ω [ψ](z̄, ξ̄, ȳ, ū) =
1
2




k−1∑
i,j=1

ȳi ȳj ψ (r′i(x̂) rj(x̂))



∣∣∣∣∣∣
T

+
∫ T

0

(
−1
2
ψ (r′′0 ξ̄, ξ̄) − z̄ ψ (r′0 ξ̄) +

k−1∑
i=1

ȳi ψ [ri, r0]′ ξ̄

+
1
2

k−1∑
i,j=1

ȳi ȳj ψ [[ri, r0], rj] +
1
2

k−1∑
i,j=1

ȳi ūj ψ [ri, rj]


 dt.

(10)

For any subset M ⊂ Ψ0 we define the functional

Ω [M ](w̄) = sup
ψ∈M

Ω [ψ](w̄).

Now let us introduce special subsets of Ψ0. For any a ∈ R, denote by Ga(Ψ0) the set of all
ψ ∈ Ψ0 satisfying the following two conditions [7, 14] along x̂(t) on [0,T]:

ψ(t) [ri, rj] (x̂(t)) = 0 ∀ i, j = 1, . . . , k− 1, (11)

k−1∑
i,j=1

ȳi ȳj ψ[[ri, r0], rj] � a | ȳ |2 ∀ ȳ = (ȳ1, . . . , ȳk−1) ∈ R
k−1. (12)

(Essentially, these are the Goh conditions written in terms of Lie brackets.) Note that if (11) holds,
then the last term in (10) vanishes. The submetric q does not enter the definitions of the sets Ψ0

and Ga(Ψ0). We also note that Eq. (11) for j = 0 obviously follows from (4), because

d

dt
(ψ ri) = ψ [ri, r0] = 0.

We also write
G+(Ψ0) =

⋃
a>0

Ga(Ψ0).

Due to [7], this set does not depend on the choice of an adjoint basis for x̂(t).

Remark 1. If k = dimΓ(x) = 2, then the control u in System (R) (and hence in the qua-
dratic form (10)) is a scalar. In this case, condition (11) and condition (16) below hold trivially.
The principal features of the multidimensional distribution Γ(x) become significant starting from
dimΓ(x) = 3.
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Next, we introduce a quadratic estimate γ(w̄). According to the general theory [9–13], we must
take

γ(w̄) = |ξ̄(0)|2 + |z̄|2 +
k−1∑
i=1

|ȳi(T )|2 +
k−1∑
i=1

∫ T

0

|ȳi|2 dt. (13)

However, on the critical subspace K we have ξ̄(0) = 0, and it follows from [15] that

|z̄|+ |ȳ(T )| � const ‖ȳ‖1;

hence, the order of γ coincides with that of the last term in (13), i.e., there exist numbers c2 � c1 > 0
(one can actually set c1 = 1) such that on K we have

c1

∫ T

0

|ȳ|2 dt � γ(w̄) � c2

∫ T

0

|ȳ|2 dt.

Now let us define an important class of quadratically rigid trajectories.

Definition 6. Following [7], a trajectory ŵ is said to be quadratically rigid if Ψ0(ŵ) 
= ∅ and
if there exists a > 0 such that

Ω [Ψ0](w̄) � a

∫ T

0

|ȳ|2 dt ∀ w̄ ∈ K. (14)

It can be shown [9] that Eq. (14) is equivalent to the condition that the set Ga(Ψ0) is nonempty
for the same a and

Ω [Ga(Ψ0)](w̄) � a

∫ T

0

|ȳ|2 dt ∀ w̄ ∈ K. (15)

In [7] Milyutin proved that condition (14) (or (15)) is sufficient for rigidity, and that this con-
dition does not depend on the choice of the adjoint basis, and thus one can speak of the qua-
dratic rigidity of the curve x̂(t). Milyutin also proved that this condition does not depend on the
parametrization of the curve x̂.

Now we are ready to state the main results of the paper.

QUADRATIC SUFFICIENT CONDITIONS

Theorem 1 (Sufficient conditions for strong minimality). Let x̂(t) be a quadratically
rigid trajectory. Then, for any submetric on Γ(x) with a strict hyperplane of support in a neighbor-
hood of x̂(t), this trajectory is a strict strong length minimizer.

Remark 2. In Theorem 1, for Problem (Z) with a given submetric, the corresponding trajec-
tory ŵ = (ẑ, x̂, û) can be nonsingular (i.e., not strictly abnormal).

Remark 3. In [1], Liu and Sussmann give examples of rigidity and minimality; these exam-
ples show that these properties do not imply each other in general. However, “nondegenerate”
rigidity, namely, quadratic rigidity implies minimality by Theorem 1. Moreover, the following “con-
verse” assertion holds: if a trajectory is strictly abnormal for a given submetric and satisfies qua-
dratic sufficient conditions for weak minimality in the problem below, Problem (Z∗) (for these
conditions, see [9–12, 15]), then it is quadratically rigid.

Theorem 1 is stronger than the result of Agrachev and Sarychev [6, Theorem 5.2] in which it is
assumed that

a) dimΓ(x) = 2,
b) the submetric is sub-Riemannian,
c) inequality (15) holds if we take a single ψ ∈ Ga(Ψ0) instead the whole set Ga(Ψ0) (which is

a stronger assumption),
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d) conditions in [6] provide a minimum with respect to the norm ‖w‖1 = |z| + ‖x‖C + ‖u‖1

instead of a strong minimum.
A point is said to provide a Pontryagin minimum if, for any N , it is a point of local minimum

on the part of the admissible set defined by the additional condition ‖u‖∞ � N . This minimum
condition is intermediate between those of the classical weak and strong minima. For any submetric,
the last constraint obviously holds for some N, and hence the notion of Pontryagin minimum is
equivalent to that with respect to ‖w‖1.

For 2-distributions, we can omit the strictness assumption for the hyperplane of support for the
submetric in Theorem 1, but in this case we can guarantee only a Pontryagin minimum instead of
strong minimum.

Theorem 2. Suppose that dimΓ(x) = 2 and that x̂ is quadratically rigid. Then, for any sub-
metric on Γ(x), the trajectory ŵ = (ẑ, x̂, û) corresponding to an appropriate parametrization of x̂
(such that ẑ = 1 and ϕ(x̂(t), û(t)) = 1 on [0, T ]) is a strict minimizer of Problem (Z) with respect
to the norm |z|+ ‖x‖C + ‖u‖1.

This theorem still implies Theorem 5.2 of [6]. For distributions of arbitrary dimension, this
theorem holds under an additional assumption.

For any a ∈ R, denote by Ea(Ψ0) the set of all ψ ∈ Ga(Ψ0) satisfying the relations [14, 15]

ψ(t) [ [ri, rj], rs] (x̂(t)) = 0 ∀ i, j, s= 1, . . . , k− 1, (16)

along x̂(t) on [0, T ]. (In another form, these conditions were suggested in [10–13] and in earlier
papers by the author.)

Definition 7. Following [7], we say that a trajectory ŵ is quadratically rigid in the Pontryagin
sense (or, briefly, Π-quadratically rigid) if E0(Ψ0) 
= ∅ and if there exists a > 0 such that

Ω [E0(Ψ0)](w̄) � a

∫ T

0

|ȳ|2 dt ∀ w̄ ∈ K. (17)

This condition is equivalent [10] to the condition that the set Ea(Ψ0) with the same a is nonempty
and

Ω [Ea(Ψ0)](w̄) � a

∫ T

0

|ȳ|2 dt ∀ w̄ ∈ K. (18)

This property again does not depend on the parametrization of x̂, but now it does depend on
the choice of the basis vector fields r1(x), . . . , rk−1(x), or, more precisely, on the choice of a (k−1)-
dimensional subspace Γ0(x) = Lin{r1(x), . . . , rk−1(x)} transversal to r0(x). If ψ ∈ Ga(Ψ0), a > 0,
and k > 2, then, for any x, relations (16) can hold for at most one subspace Γ0(x). For 2-distributions
(i.e., for k = 2), there is only one relation in (16) in which i = j = s = 1, and it trivially holds in
any basis, and hence Π-quadratic rigidity is equivalent to “ordinary” quadratic rigidity.

As was shown in [7], if ŵ is Π-quadratically rigid, then it is Π-rigid, which means that, for any
N , ŵ is isolated with respect to the norm ‖w‖1 in the set of all trajectoriesof System (R) satisfying
the uniform bound ‖u‖∞ � N .

Denote by Problem (Z∗) the problem obtained from Problem (Z) by replacing condition (2) by
the condition u0 � 1, i.e., the admissible control set becomes

U∗ = { u | u0 � 1, u1, . . . , uk−1 are free}.
If {u0 = 1} is a plane of support for U(x) at û = (1, 0, . . . , 0), then we obviously have U(x) ⊂ U∗,
and thus Problem (Z∗) is an extension of Problem (Z).

Theorem 3. Let the trajectory ŵ be Π-quadratically rigid in an adjoint basis. Then it is a point
of strict Pontryagin minimum in Problem (Z∗). This means that, for any submetric such that

Γ0(x) = Lin{r1(x), . . . , rk−1(x)}
is a plane of support at r0(x) in a neighborhood of χ̂, the trajectory ŵ is a strict minimizer in
Problem (Z) with respect to the norm |z|+ ‖x‖C + ‖u‖1.

In particular, this theorem implies Theorem 2.
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SUFFICIENT CONDITIONS FOR SMALL INTERVALS

Theorems 1–3 yield sufficient conditions for the minimality of the length for small intervals of
the curve.

We again assume that x̂(t), t ∈ [0, T ] , is a Γ-admissible trajectory. Let ŵ = (x̂, ẑ = 1, û =
(1, 0, . . . , 0) ) be the corresponding trajectory of Problem (Z) and System (R). We consider these
trajectories, as well as Problem (Z) and System (R), on the subintervals ∆ = [t1, t2] ⊂ [0, T ], and
impose terminal relations of the form x(t1) = x̂(t1), x(t2) = x̂(t2); we denote the corresponding
objects by x̂∆, ŵ∆, (Z∆) and (R∆), respectively.

Definition 8. According to [7], a trajectory x̂ is said to be quadratically rigid on small intervals
if there exists ε > 0 such that, for any ∆ ⊂ [0, T ], |∆| � ε, the set G+(Ψ0(ŵ∆)) is nonempty, i.e.,
there exists a costate function ψ(t) on ∆ satisfying the adjoint equation (5), relations (4) and (11),
and inequality (12) for some a = a(∆) > 0.

It is shown in [7, §6] that this property does not imply the stationarity of ŵ on the entire interval
[0,T].On the other hand, this property implies the quadratic rigidity of x̂∆ for any sufficiently small
interval ∆. (Note that, if G+(Ψ0(ŵ∆)) is nonempty and ∆ is sufficiently small, then (15) holds; see
[7, 15].)

Definition 9. For a given submetric on Γ(x), a trajectory x̂ is said to be a global (strict global)
minimizer on small intervals if there exists ε > 0 such that, for any ∆ ⊂ [0, T ], |∆| � ε, the
trajectory x̂∆ is a global (strict global) length minimizer with respect to the given submetric,
respectively.

Theorem 4 (Sufficient conditions for global minimality on small intervals). Let x̂ be
quadratically rigid on small intervals. Then, for any submetric on Γ(x) that has a strict hyperplane
of support in a neighborhood of x̂(t), the trajectory x̂ is a strict global minimizer on small intervals.

This theorem generalizes results of Liu–Sussmann [1, Theorem 5] and of Agrachev–Sarychev [6,
Corollary 5.2]. In both of these papers, it is assumed that

a) dimΓ(x) = 2,
b) the submetric is sub-Riemannian,
c) the set G+(Ψ0(ŵ [0, T ])) is nonempty.
(Note that, in Theorem 4, it can happen that the trajectory ŵ is not an extremal on the entire

interval [0, T ], i.e., under our conditions, even the broader set Ψ0 (ŵ [0, T ]) can be empty.)
For 2-distributions, in Theorem 4 one can omit the condition that the plane of support is strict.

For Γ(x) of arbitrary dimension, we again assume that the additional condition (16) holds. Set

E+(Ψ0(ŵ∆)) =
⋃
a>0

Ea(Ψ0(ŵ∆)).

Definition 10. A trajectory x̂ is said to be Π-quadratically rigid on small intervals in an adjoint
basis if there exists an ε > 0 such that, for any ∆ ⊂ [0, T ], |∆| � ε, the set E+(Ψ0(ŵ∆)) is nonempty,
i.e., there exists a costate function ψ(t) on ∆ satisfying the adjoint equation (5), relations (4), (11),
and (16), and inequality (12) for some a = a(∆) > 0.

(As above, for 2-distributions, any trajectory quadratically rigid on small intervals is automati-
cally Π-quadratically rigid on small intervals in any adjoint basis.)

The following theorem is the analog of Theorem 3 for small intervals.

Theorem 5. Let x̂ be Π-quadratically rigid on small intervals in an adjoint basis. Then, for any
submetric on Γ(x) such that Γ0(x) = Lin{r1(x), . . . , rk−1(x)} is a hyperplane of support at r0(x)
in a neighborhood of χ̂, the trajectory x̂ is a strict global length minimizer on small intervals.

For the proofs of Theorems 1–5, see the forthcoming paper [16].
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EXAMPLE

Consider a distribution Γ(x) in R
3 generated by the two following vector fields,

r1(x) =
∂

∂x1
and r0(x) = b(x1)

∂

∂x2
+ c(x1)

∂

∂x3

with an arbitrary strictly convex submetric (in particular, an arbitrary inner product) on it. Here
b and c are C2 smooth functions satisfying the conditions

b(0) = 1, c(0) = c′(0) = 0, c′′(0) 
= 0. (19)

This example includes (as special cases) those of Montgomery [4],Liu–Sussmann [1, Sec. 2.3], and
Petrov [3]. (In [4], b ≡ 1 and c = x21; in [1], b = 1− x1 and c = x21; in [3], c(x1) = b(x1)x21 with a
specific function b. All these papers consider sub-Riemannian metrics in which the basis (r1, r0) is
orthonormal.)

The corresponding control system (2) is as follows: ẋ = u0 r0(x) + u1 r1(x), i.e.,

ẋ1 = u1, ẋ2 = b(x1) u0, ẋ3 = c(x1) u0. (20)

Consider the trajectory x̂(t) = (0, t, 0), û(t) = (1, 0), t ∈ [0, T ], where T > 0 is arbitrary. Then
{r0, r1} is an adjoint basis for x̂, and System (R) becomes

ẋ1 = u1, ẋ2 = z b(x1), ẋ3 = z c(x1), ż = 0, x(0) = (0, 0, 0), x(T ) = (0, T, 0), (21)

where the control u1 is a free scalar, û1 = 0, and ẑ = 1. The set Ψ0 consists of all normalized
3-vector functions ψ(t) satisfying the adjoint equation (5), i.e.,

ψ̇1 = −ψ2 b
′(0)− ψ3 c

′(0), ψ̇2 = 0, ψ̇3 = 0, (22)

and orthogonal to Γ(x) along x̂(t),

ψ1u1 + (ψ2b(0) + ψ3c(0)) u0 = 0 ∀u0, u1. (23)

In view of (19), this readily implies that Ψ0 consists of the two functions (in fact, constant vectors),
ψ = (0, 0, 1) and ψ = −(0, 0, 1). For each of them, the Lagrange function is

Φ [ψ](z, x, u) = ψ3(0)x3(0)− ψ3(T )x3(T ) + ψ3

∫ T

0

(ẋ3 − z c(x1)) dt,

and hence its second variation at (ẑ, x̂, û) is the functional

Ω [ψ](z̄, x̄, ū) = −ψ3

∫ T

0

c′′(0) x̄21 dt. (24)

We must consider this functional on the critical subspace, which, in particular, contains the equation
˙̄x1 = ū1, x̄1(0) = 0. Since the Goh variable ȳ = ȳ1 satisfies the same equation, ˙̄y = ū1, ȳ(0) = 0,
we have x̄1 = ȳ, and, choosing ψ3 = − sign c′′(0), we obviously obtain

Ω [ψ](z̄, x̄, ū) � |c′′(0)|
∫ T

0

|ȳ|2 dt; (25)

hence, by Theorem 1, the trajectory under consideration is a strict strong minimizer for any T and
any strictly convex submetric. (For small T, by Theorem 4, it is a strict global minimizer.) This
result is stronger than those obtained in [4, 1, 3]; in particular, in these papers, the minimality was
proved for small T only.

Remark 4. Note that if b′(0) = 0, then it can happen that the above trajectory is not strictly
abnormal for some submetrics. For instance, if ϕ(x, u) = |u| in the above basis, then PMP is also
satisfied with ψ = (0, 1, 0), which does not belong to Ψ0(ŵ) because it is not orthogonal to Γ(x̂(t)).
However, due to Theorem 1, this circumstance does not influence in the validity of the conclusion
that x̂(t) is minimal.
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