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A quadratic form with Legendre condition degenerate at a single

point:

(1) J =

1∫

0

(
t2(u, u)− 2bt(Px, u) + (Dx, x)

)
dt,

(2) ẋ = u, x(1) = 0.

Here, x and u are two-dimensional, P is the matrix of rotation

by 90◦, b ∈ R − a parameter, D − a constant symmetric matrix,

u(t) ∈ L∞[0, 1] .

Functional (1, 2) is self-similar: its nonnegativity does not depend

on the interval [0, T ] ; so we set T = 1.

The problem: describe parameters b and D for which J ≥ 0 on the

above set of functions.

We cannot directly apply the classical Jacobi condition.

Lemma 1. J(x) ≥ 0 for all Lipschitzian x(t) with x(1) = 0 is

equivalent to J(x) ≥ 0 for all Lipschitzian x(t) with x(0) = x(1) = 0.
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This lemma makes it possible to apply the Jacobi conditions, since we

can assume that x(0) = 0, and then we can move the left endpoint of

this interval. For θ > 0 , the strengthened Legendre condition holds on

each interval [θ, 1] , and, therefore, we can seek out a point t∗ conjugate

to t = 1.

If there is no such point on (0,1), then for any θ > 0 the functional

J > 0 on [θ, 1], and then J ≥ 0 on [0, 1] .

But we proceed in another way, by extracting a complete square.

Functional (1, 2) can be rewritten in the following two interesting

forms. Set t = e−τ , tu = −w(τ), then dt = −tdτ, and

(3) J =

∞∫

0

e−τ
[
w2 + 2b(Px, w) + (Dx, x)

]
dτ,

dx

dτ
= w, x(0) = 0.

Such functionals are typical for mathematical economics models.

Further, set e−τ/2x = z and e−τ/2w = v, then

(4)
dz

dτ
= −1

2
z + v, z(0) = 0,

and the functional has constant coefficients:

(5) J =

∞∫

0

[
v2 + 2b(Pz, v) + (Dz, z)

]
dτ.

Eq. (4) can be simplified by setting u = −1
2 z + v. Changing the

notation τ , z to the usual t , x, we obtain

(6) ẋ = u, x(0) = 0,
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(7) J =

∞∫

0

[
u2 + 2b(Px, u) + (Qx, x)

]
dt,

where Q = D + 1
4E.

Our functional will be studied precisely in this form.

Lemma 2. If J ≥ 0, then Q ≥ 0 (a condition of Legendre type).

(This condition does not hold for a finite interval [0, T ] !)

3. Take an arbitrary symmetric matrix S and add the expression

d

dt
(Sx, x) = 2(Sx, u)

under the integral sign in order to extract a complete square of terms

containing u. We obtain

(8) J =

∫ ∞

0

(
[u + (S + bP )x]2 + (Mx, x)

)
dt,

where

(Mx, x) = (Qx, x)− (Sx + bPx)2,

i.e.,

(9) M = Q− S2 + b(PS − SP )− b2E.

If M ≥ 0, then, obviously, J ≥ 0 for all compactly supported

functions satisfying (6).

We ask the question: for which b and Q can one obtain M ≥ 0 by

choosing an appropriate matrix S ?

Without loss of generality, we assume that matrix Q is diagonal, i.e.,

Q =

(
q1 0

0 q2

)
,



4

where, according to Lemma 2, q1 ≥ 0 and q2 ≥ 0.

Let us seek S in the form

S =

(
0 c

c 0

)
,

where c is an unknown parameter. (Later we will see that such S are

sufficient.) Then, by simple calculations, we get

M =

(
q1 − (b + c)2 0

0 q2 − (b− c)2

)
,(10)

and the question reduces to the following: for which b, q1 , q2 there

exists c such that

q1 − (b + c)2 ≥ 0, q2 − (b− c)2 ≥ 0 ?

The latter is equivalent to inequalities

√
q1 ≥ |b + c|, √

q2 ≥ |b− c|.

Obviously, such c can be found if and only if

(11)
1

2
(
√

q1 +
√

q2) ≥ |b|.

Thus, we established that if (11) is fulfilled, then there exists a sym-

metric matrix S such that the corresponding M ≥ 0, and, therefore,

J ≥ 0.

What happens if (11) is not fulfilled? There is no matrix S of the

required form (with zero diagonal) but does this mean that the property

J ≥ 0 is violated? We will show that it is really so, and this is a key

point of our approach.

Without loss of generality, assume that b ≥ 0. Let

1

2
(
√

q1 +
√

q2) < b.
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In this case there obviously exists c such that

(12)
√

q1 < b + c,
√

q2 < b− c

(for example, c = 1
2 (
√

q1 −√q2) ), i.e.,

q2
1 < (b + c)2, q2

2 < (b− c)2;

hence, both entries of matrix M are negative: M < 0. Then, for a

certain δ > 0 we have (Mx, x) ≤ −δ|x|2 ∀x, i.e., the second term in

(8) is negative-definite.

Now, we try to find a pair (x, u) for which the first term in (8) is

zero: u + (S + bP )x = 0, i.e.,

(13) ẋ = −(S + bP )x.

Lemma 3. If (12) holds, then Eq. (13) has a periodic solution of the

form

x(t) = f sin ωt + h cos ωt

with ω 6= 0 and linearly independent vectors f, h ∈ R2.

Proof. It suffices to show that matrix R = (S + bP ) has a purely

imaginary eigenvalue λ = iω 6= 0. Since

R =

(
0 c− b

c + b 0

)
,

the characteristic equation is λ2 + (b2− c2) = 0. If b2− c2 > 0 (i.e., if

|c| < b), then this equation has two purely imaginary roots

λ = ±i ω, ω =
√

b2 − c2 > 0.

Check that precisely this case is realized. From (12) we get b + c >

0, b− c > 0, whence b2 − c2 > 0. Lemma is proved. ¤
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Since the vectors f and h are linearly independent, x(t) = f sin ωt+

h cos ωt describes an ellipse in R2, and we can assume that |x| ≥ 1

on it. Now, consider x(t) on a large time interval [1, T ]. The first

term in (8) is equal to zero by definition, and since |x| ≥ 1, we have

(Mx, x) ≤ −δ; therefore, the integral over [1, T ] is a negative quantity

≤ −δ(T − 1) of order T.

On the intervals [0,1] and [T, T + 1] we reduce x to zero end-values

at the points 0 and T +1; since x(t) is bounded, the integrals over these

intervals make only a finite contribution to the functional. Therefore,

on the entire interval [0, T + 1] , for large T we obtain a function x̂(t)

for which

J(x̂) ≤ −δT + const < 0 .

Remark 1. The key point here is the property that the found cyclic so-

lution of Eq.(13) can be “rolled up” for an arbitrarily long time, thereby

accumulating an arbitrarily large negative integral of (Mx, x) and pre-

serving the bounded value of x. The first term in (8) remains equal to

zero all the time by virtue of (13).

Thus, if inequality (11) does not hold, there exists a compactly sup-

ported function x̂(t) for which J(x̂) < 0. Therefore, we established the

following property.

Theorem 1. Functional (7) is nonnegative on all compactly supported

functions satisfying Eq.(6) if and only if the eigenvalues of matrix Q

are nonnegative and satisfy (11).

Remark 2. Squaring (11), we obtain an equivalent inequality

(q1 + q2) + 2
√

q1q2 ≥ 4b2 , which can be written without reducing the

matrix Q to the diagonal form:

(14) Tr Q + 2
√

det Q ≥ 4b2.
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4. Particular cases. Examine the obtained conditions for functionals

(1) and (3). Since Q = D+ 1
4E, inequality Q ≥ 0 means D+ 1

4E ≥ 0,

and (11) means

(15)
1

2

(√
d1 +

1

4
+

√
d2 +

1

4

)
≥ |b|.

(b) Consider the case b = 0 and D = −1
4E (i.e., Q = 0) .

Then functional (3) satisfies the inequality

(16) J =

∞∫

0

e−t

(
u2 − 1

4
x2

)
dt ≥ 0

on all compactly supported x(t) such that

(17) ẋ = u, x(0) = 0.

In other words, for these functions,

(18)

∞∫

0

e−tx2 dt ≤ 4

∞∫

0

e−tu2 dt.

Introduce the Hilbert space H = L2[0,∞) with weight e−t. By (18),

the integral operator u 7→ x given by formula (17) is a linear bounded

operator H → H, and its norm does not exceed
√

4 = 2. Actually, its

norm is equal to 2, since the constant 4 in inequality (18) is sharp.

(c) For functional (5), this property means that for any compactly

supported function z satisfying (4), we have

J =

∞∫

0

(
v2 − 1

4
z2

)
dt ≥ 0,

i.e.,

(19)

∞∫

0

z2 dt ≤ 4

∞∫

0

v2 dt.
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This implies that for any function v ∈ L2[0,∞), the function z(t) sat-

isfying the equation

(20) ż = −1

2
z + v, z(0) = 0,

also belongs to L2[0,∞), and, moreover, the norm of operator v 7→ z

does not exceed (and actually equals) 2.

The same property holds for the equation

(21) ż = −kz + v, z(0) = 0

for any k > 0. (It reduces to (20) by simple scaling.)

Lemma 4. For any v ∈ L2[0,∞), the solution z(t) of Eq. (21) also

belongs to L2[0,∞) , and the norm of operator v 7→ z is equal to 1/k.

Remark 3. The above operator, although being integral and, therefore,

completely continuous in the space L2[0, T ] for any finite T , is not

completely continuous in the space L2[0,∞). Moreover, it has a purely

continuous spectrum = the disk in the complex plane, whose diameter

is the segment [0, 1/k] of real axis.

(d) For functional (1) with D = −1
4E and b = 0 , we obtain the

inequality

J =

1∫

0

(
t2u2 − 1

4
x2

)
dt ≥ 0,

(22) i.e.,

1∫

0

x2 dt ≤ 4

1∫

0

t2u2 dt

for all x, u satisfying Eq. (2) and vanishing in a certain neighborhood

of t = 0. Then the same inequality is also true for all u(t) for which the

integral on the right-hand side of (22) converges (i.e., for all u(t) from

the space L2[0, 1] with weight t2); here the integral on the left-hand

side also converges by virtue of (22).
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Inequality (22) and the related inequalities (19) and (18) are the well-

known Hardy inequality [1, Sec. 9.8]; therefore, the inequality J ≥ 0,

under conditions (11) or (15), can be treated as its two-dimensional

generalization.

For example, taking Q = aE with arbitrary a > 0 in functional (3),

we have D = (a − 1/4)E and, according to (15), |b| ≤ a, so, setting

b = ±a, we get

J =

∞∫

0

e−t
[
u2 ± 2a(Px, u) + (a− 1/4)x2] dt ≥ 0

under the conditions ẋ = u, x(0) = 0.

This inequality can be written as

∞∫

0

e−t

(
1

4
− a

)
|x|2 dt ≤

∞∫

0

e−t
(
u2 ± 2a(Px, u)

)
dt. (23)

For functional (1) we similarly obtain

∫ 1

0

(
1

4
− a

)
|x|2 dt ≤

∫ 1

0

(
t2 |u|2 ± 2at(Px, u)

)
dt (24)

under the conditions ẋ = u, x(1) = 0.

The two last inequalities are equivalent. Let us consider one of them,

say (23). It can be rewritten as

∞∫

0

e−t

(
1

4
− a

)
|x|2 dt + 2a

∣∣∣∣∣∣

∞∫

0

e−t (Px, u)

∣∣∣∣∣∣
dt ≤

∞∫

0

e−t |u|2 dt (25)

for any compactly supported x(t) with ẋ = u, x(0) = 0.
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Note that (25) would easily follow from the Hardy case (a = 0) if we

had the inequality

−
∫ ∞

0
e−t |x|2 dt + 2

∣∣∣∣
∫ ∞

0
e−t (Px, u)

∣∣∣∣ dt ≤ 0,

i.e.,

2

∣∣∣∣
∫ ∞

0
e−t (Px, u)

∣∣∣∣ dt ≤
∫ ∞

0
e−t |x|2 dt, (26)

but the last one is not true, because we can roll up x(t) along any closed

cycle with arbitrary large speed, thus obtaining a bounded quantity at

the right hand side and an infinitely growing quantity at the left hand

side of (26). So, one cannot obtain (23) just by adding (26) to the Hardy

inequality.

5. We also call attention to the following interesting property.

Lemma 5. Let inequality (11) or equivalent inequality (14) hold with the

equality sign for functional (7). Then J(x) > 0 ∀x 6= 0.

Indeed, if (11) turns into equality, then the matrix M vanishes.

Therefore, the functional J reduces to the first term in (8), and if

J(x) = 0, then u + (S + bP )x = 0, i.e., ẋ = −(S + bP )x. Since

x(0) = 0 , we obtain x ≡ u ≡ 0 . ¤

Thus, if (11) turns into equality, then, on the one hand, we have

J(x) > 0; on the other hand, one cannot decrease any qi or increase

|b| , since inequality (11) would be violated, and by the same Theorem 1,

we would obtain J(x) < 0 for some x .

Lemma 5 says that the constant 4 in inequalities (18), (19), and (22)

is sharp but is not attained. That is, on the one hand, it cannot be

decreased, and, on the other hand, for any nonzero function x(t) these

inequalities are strict, i.e., they are fulfilled with a certain C(x) < 4.

This is an interesting peculiarity of inequalities between functions and

their derivatives.
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All these estimates can be also obtained either by the theory of con-

jugate points, or by the so-called frequency criterion [3, 4, 6]; this is

done in [8].

One more corollary of Lemma 5 is the possibility of constructing ex-

amples of optimal control problems on [0,∞) which have no solution.

Example 1. The problem: J(x, u) → min, where J is given by (6), (7)

with coefficients satisfying (11) in the form of the equality (for example,

b = q1 = q2 = 0), under the constraint

∞∫

0

|x|2 dt = 1. (28)

Show that inf J = 0 (and then, by Lemma 5, it is not attained).

Indeed, if inf J = a > 0, then, by virtue of the homogeneity, for any

x ∈ L2 [0,∞) we have J(x) ≥ a

∫
|x|2 dt, i.e.,

J̃(x) = J(x)− a

∫ ∞

0
|x|2 dt ≥ 0. (29)

But J̃ has the matrix Q̃ = Q − aE, that violates inequality (11) (be-

cause it is fulfilled as an equality for Q ); therefore, by Theorem 1,

inequality (29) cannot hold for all x, a contradiction.

Note that this problem is convex in u. One can object that it is not

compact in u. Then, consider the following

Example 1’. The same problem with additional constraint |u| ≤ 1.

One can show that still inf J = 0 .
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In the particular case where b = q1 = q2 = 0 (actually, this is a

one-dimensional case), we obtain that the problem

J =

∞∫

0

u2 dt → min, ẋ = u, x(0) = 0,

∞∫

0

x2 dt = 1,

and also this problem with additional constraint |u| ≤ 1, has no solu-

tion. This phenomenon does not happen for a finite time interval [0, T ] .

Similar considerations show that there is no solution in the following

example of “economical” type.

Example 2.

J =

∞∫

0

e−τ
(
w2 + 2b(Px,w) + (Dx, x)

)
dτ → min,

dx

dτ
= w, x(0) = 0,

∞∫

0

e−τ (x, x) dτ = 1,

where b and D satisfy condition (15) in the form of equality (e.g., b = 0

and d1 = d2 = −1/4 ).

Here, as before, inf J = 0, but it is not attained.
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Conclusions. We studied the simplest nontrivial case of a quadratic

functional with the degenerate Legendre condition by transforming it

into a functional with “good” coefficients but defined on the semiaxis

[0,∞). On the semiaxis (in general, on the spaces of infinite measure),

the integral functionals qualitatively differ in their properties from the

integral functionals on finite intervals (i.e., on the spaces of finite mea-

sure); they still have a singularity. This is related to the fact that the

integral operators on the spaces of infinite measure are not, in general,

completely continuous.

We have succeeded in obtaining exact formulas for the nonnegativity

of the examined functional only in the two-dimensional case.

Even for the three-dimensional case, this question remains

open.
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