A. V. DMITRUK

Second Order Necessary and Sufficient Conditions of a Pontryagin Minimum for Singular Boundary Extremals

We consider the following optimal control problem (Problem A):

$$J = \varphi_0(p) \to \min, \qquad \varphi_i(p) \le 0, \quad i = 1, \dots, \nu, \qquad g(p) = 0, \tag{1}$$

$$\dot{x} = f(x,t) + F(x)u = f(x,t) + \sum_{i=1}^{k} u_i f_i(x), \qquad u(t) \in U.$$
(2)

Here $p = (x_0, x_T)$, $x_0 = x(t_0)$, $x_T = x(T)$, the time interval $[t_0, T]$ is fixed; the variables u, x, g are multidimensional, $f_i(x)$ are the columns of the matrix F(x). The set U is polyhedral, closed and solid.

Let us examine a trajectory $w^0(t) = (x^0(t), u^0(t))$, which satisfies the Pontryagin Maximum Principle (MP), the collection of Lagrange multipliers, for simplicity, being unique, up to normalization. We assume that w^0 is totally singular, which means that Pontryagin function does not depend on $u \in U$, i.e. $\psi(t)F(x^0(t),t) = 0$. Furthermore, we assume that $u^0(t)$ is continuous, and for all t lies in the relative boundary of one and the same face U_0 of U. (The case $U_0 = U$ is not forbidden.) The case $U_0 \neq U$ is the simplest case of a boundary control.

There is a large number of works on higher-order optimality conditions for Problem A, done, in some special statements, since early 1960-s (Kelley, Kopp, Moyer, Bryson, Robbins, Goh, Speyer, Jacobson, Bell, McDanell, Powers, Gabasov, Kirillova, Krener, Agrachev, Gamkrelidze, Milyutin, Knobloch, Zelikin, Gurman, Dykhta, Lamnabhi-Lagarrigue, Stefani and others). An overwhelming majority of conditions obtained are higher-order *necessary* conditions which have *a pointwise* character (like the classical Legendre condition). Only few works are devoted to *sufficient* conditions, but these conditions obtained till recently are rather far from necessary ones.

In [1, 2] and his earlier works, the author gave for Problem A both necessary and close to them sufficient second order conditions of optimality (*adjoint pairs* of conditions). Here we specify these conditions in a form, convenient for the above case of a boundary control. A difficulty in this case is that one cannot take two-side variations of the control, which are of crucial importance in obtaining higher-order optimality conditions for an interior control.

Speaking of "optimality", we consider two types of minimum - a classical weak and a Pontryagin minimum (Π -minimum), which is an L_1 -minimum with respect to control on any uniformly bounded control set. Note that Π -minimum allows one to take so-called needle-type variations of the control.

Speaking of "second order" conditions, we chose the following quadratic functional (order) of estimation:

$$\gamma(\bar{w}) = |\bar{x}(t_0)|^2 + |\bar{y}(t_1)|^2 + \int |\bar{y}(t)|^2 dt, \quad \text{where} \quad \dot{\bar{y}} = \bar{u}, \quad \bar{y}(t_0) = 0.$$

Let $\Omega(\bar{w})$ be the second variation of Lagrange function at w^0 . Denote $f_0(x,t) = f(x,t) + \sum u_i^0 f_i(x)$ and let \mathcal{K} be the cone of critical variations for Problem A with unbounded control, i.e. the set of all $\bar{w} = (\bar{x}, \bar{u})$ such that

 $\varphi_i'(p^0) \, \bar{p} \leq 0$ for all active $i \in \{0, \dots, \nu\}, \quad g'(p^0) \, \bar{p} = 0, \quad \dot{\bar{x}} = f_0'(x^0) \, \bar{x} + \sum \bar{u}_i f_i(x^0)$ (the prime at f_0 stands for the derivative w.r.t. x along $x^0(t)$). Denote $N = \operatorname{con} (U - u^0(t))$. The critical cone for Problem A is $\mathcal{K} \cap \mathcal{N}$, where $\mathcal{N} = \{ \bar{w} \mid \bar{u}(t) \in N \text{ a.e.} \}$.

Theorem 1. a) Let w^0 be a point of a weak minimum (Π -minimum) in Problem A. Then some pointwise conditions G_0 (G_0 plus E_0 , resp.) hold, and moreover, $\Omega(\bar{w}) \ge 0$ for all $\bar{w} \in \mathcal{K} \cap \mathcal{N}$.

b) Suppose that some pointwise conditions G_a (G_a plus E_a) hold for an a > 0, and

$$\Omega(\bar{w}) > a\gamma(\bar{w}) \qquad \text{for all} \quad \bar{w} \in \mathcal{K} \cap \mathcal{N}.$$
(3)

Then w^0 is a point of a strict weak minimum (strict Π -minimum, resp.) in Problem A.

These necessary and sufficient conditions are close to each other; we call them adjoint pairs of conditions. In this sense they are similar to those in the analysis and the classical calculus of variations.

Conditions $G_a, a \ge 0$ concern the quadratic form Ω . Condition E_a includes also coefficients of the third variation of Lagrange function and the admissible control set U.

Using the known Goh transformation
$$\bar{x} = \xi + \sum \bar{y}_i f_i(x^0(t))$$
, one can present Ω in the form:
 $\Omega(\bar{\xi}, \bar{y}, \bar{u}) = \int_{t_0}^T \left(-\frac{1}{2} \psi(f_0''\bar{\xi}, \bar{\xi}) + \sum_i \bar{y}_i \psi [f_i, f_0]' \bar{\xi} + \frac{1}{2} \sum_{i,j} \bar{y}_i \bar{y}_j \psi [[f_i, f_0], f_j] + \frac{1}{2} \sum_{i,j} \bar{y}_i \bar{u}_j \psi [f_i, f_j] \right) dt + \omega(\bar{\xi}_0, \bar{\xi}_T, \bar{y}_T) + \left\{ \frac{1}{2} \sum_{i,j} \bar{y}_i \bar{y}_j (\psi, f_i' f_j) + \sum_i \bar{y}_i (\psi, f_i' \bar{\xi}) \right\} \bigg|_T, \quad \dot{\bar{\xi}} = f_0' \bar{\xi} + \sum_i \bar{y}_i [f_0, f_j],$

where ω is the second variation of the terminal Lagrange function, and [,] are Lie brackets.

Now let us write out conditions G_a and E_a . Denote by l(N) the maximal linear subspace in N, and by l'(N) a complementary subspace. Then $N_1 = N \cap l'(N)$ is a sharp cone, and $N = N_1 \oplus l(N)$, so that for all $u \in N$ we have $u = (u', u''), u' \in N_1, u'' \in l(N)$. Taking l(N) to be the coordinate subspace for indices $\{r + 1, \ldots, k\}$, and l'(N) that for $\{1, \ldots, r\}$, we have $u' = (u_1, \ldots, u_r) \in N_1$, and $u'' = (u_{r+1}, \ldots, u_k)$ is a free variable.

We say that $\psi(t)$ satisfies conditions G_a , for some $a \ge 0$, if the following three conditions hold along $x^0(t)$:

$$i) \quad \psi(t) \left[f_i, f_j \right] = 0 \qquad \forall \ i, j \ge r+1, \tag{4}$$

ii) the symmetric $(k-r) \times (k-r)$ matrix $Q(t) = || q_{ij}(t) = \psi [[f_i, f_0], f_j] || \ge a$ (5)

iii) condition (4) holds for all i < r, j > r + 1. (6)

Conditions (4) and (5) concerning the free controls are known Goh conditions; the boundary condition (6) is a new one. To write out condition E_a , we need the following qubic functional:

$$e(\bar{y}) = e(\bar{y}'') = \int (-\frac{1}{2} \sum \bar{u}_i \bar{y}_j \bar{y}_s \,\psi(f_i'' f_j, f_s) + \sum \bar{y}_i \bar{u}_j \bar{y}_s \,\psi(f_i' f_j' f_s)) \,dt = \int (\mathcal{E}(t) \,\bar{y}, \bar{y}, \bar{u}) \,dt,$$

both sums being taken over i, j, s > r, thus $\mathcal{E}(t)$ being a $(k-r) \times (k-r) \times (k-r)$ tensor.

We say that $\psi(t)$ satisfies condition E_a , if for any $t_* \in [t_0, T]$, for any Lipschitz function $\bar{y}(t)$, having $\bar{y}(t_0) = \bar{y}(T) = 0$ and $\dot{\bar{y}} = \bar{u} \in U_0 - u^0(t_*)$, the following inequality holds:

$$L[\psi, t_*](y) = \int ((Q(t_*)\bar{y}, \bar{y}) + (\mathcal{E}(t_*)\bar{y}, \bar{y}, \bar{u})) dt \ge a \int (\bar{y}, \bar{y}) dt.$$
(7)

Theorem 2. If (5) holds for a > 0, 0 < a' < a, and U_0 is small enough, then condition $E_{a'}$ holds, and, however large U is, inequality (3) guarantees a Π -minimum at w^0 in Problem A.

For the simplest case, when $U_0 = \mathbb{R}^{k-r}$, condition E_a decomposes into (5) and the following equations: $\forall i, j, s > r \qquad \psi(t) [[f_i, f_j], f_s] = 0 \quad \text{along } x^0(t).$

Theorems 1 and 2 remain as well valid, in appropriate forms, for the general case, when Lagrange multipliers are not unique. They proved to be helpful in the problem of minimality of abnormal sub-Riemannian geodesics.

Acknowledgements

This work was supported by ISF grant MGG000 and by RFFI grant 94-01-00337. The author thanks Prof. A.A.Milyutin for numerous discussions and valuable suggestions.

1.References

- 1 DMITRUK, A.V.: Second order necessary and sufficient conditions of a Pontryagin minimum for singular regimes. Lecture Notes in Control and Information Sciences, 180, (1992), 334-343.
- 2 DMITRUK, A.V.: Second order optimality conditions for singular extremals. in "Computational Optimal Control" (R.Bulirsch and D.Kraft eds.), ISNM, 115, Birkhäuser, 1994, p. 71–81.
- Address: DR. ANDREI DMITRUK, CEMI RAN, Russia 117418, Moscow, Nakhimovskii prospekt, 47. e-mail: dmitruk@member.ams.org