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Existence Theorem for Optimal Control

Problems on an Infinite Time Interval

A.V. Dmitruk and N.V. Kuz’kina

We consider an optimal control problem on an infinite time interval. The
system is linear in the control, the cost functional is convex in the control,
and the control set is convex and compact. We propose a new condition on
the behavior of the cost at infinity, which is weaker than the previously known
conditions, and prove the existence theorem under this condition. We consider
several special cases and propose a general abstract scheme.

1 Introduction

Optimal control problems on infinite time interval appear both in theoretical and in

applied fields of mathematics, e.g., in dynamical models of mathematical economics

[1]–[7]. The existence of solutions in such problems cannot be proved so easily as in

the problems on a finite time interval [8]–[10]. The existence conditions suggested

in the known papers on this subject either are too restrictive or have difficult formu-

lation, and hence cannot be verified easily. In this paper we consider a broad class

of problems including, in particular, most of economic dynamical problems, and

propose rather natural conditions guaranteeing the existence of solutions in these

problems, which are weaker than the previously known conditions.

2 Statement of the problem and assumptions

On the half-axis [0,∞) we consider n -vector functions x(t) absolutely continu-

ous on each interval [0, T ] (we write x(·) ∈ AC[0,∞)) and measurable r -vector

functions u(t) which are essentially bounded on each [0, T ] (the space of these

functions we denote by L∞[0,∞) ).
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Note that the functions from AC[0,∞) can be not absolute continuous on the

whole half-axis [0,∞). The similar concerns also the functions from L∞[0,∞).

(We do not use more specific notation for the spaces AC and L∞ on [0,∞),

since these spaces will be understood here only in the above sense.)

On the space of pairs of functions (x, u) we consider the following optimal

control problem:

J(x, u) = β(x(0)) +

∞∫

0

ϕ(t, x, u) dt → min, (1)

ẋ = f(t, x, u), (2)

x(0) ∈ M0 , (3)

u(t) ∈ U(t, x(t)) , (4)

x(t) ∈ S(t) . (5)

A pair of functions (x, u) ∈ AC × L∞[0,∞) satisfying constraints (2)–(5) on

[0,∞) is called admissible (as usual, all relations with measurable functions are

assumed to be satisfied almost everywhere), and the set of all admissible pairs will

be denoted by Ω. The cost functional (1) is considered for all pairs (x, u) ∈ Ω

for which the corresponding Lebesgue integral exists on any interval [0, T ] and

converges to a finite or infinite limit as T →∞. Thus,

J(x, u) = lim
T→∞

JT (x, u), where JT (x, u) = β(x(0)) +

T∫

0

ϕ(t, x, u) dt,

and the limit is meant in the above extended sense. (Below, we give a condition

guaranteeing the convergence of the integral for any pair (x, u) ∈ Ω .)

Remark. In order to avoid the ”inconvenient” question about the convergence

of integral in (1), some authors suggest to change the concept of optimality itself, i.e.,

the very principle of comparison of two admissible pairs: to compare not the limit

values of integral (1) (which may not exist), but instead, to consider the behavior

of the difference JT (x′′, u′′) − JT (x′, u′) of the functionals on the intervals [0, T ]

as T → ∞ . However, this approach does not provide a natural unique definition

of which pair generates a ”better” family of values JT , and so, one must consider

several different definitions of this and, respectively, several different concepts of

optimality (see the papers [4]–[7] and references therein). In this paper we do not

consider these generalizations. The admissible pairs are compared here in the usual

way, by the values of the cost functional, and therefore, the optimality is understood

as the attainment of the minimal possible value of the functional.
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Assumptions:

A1) The function f(t, x, u) is continuous with respect to the pair (t, x) and

linear in u , i.e., f(t, x, u) = a(t, x) + B(t, x)u, where the n− dimensional vector

a and n× r− matrix B continuously depend on (t, x) ;

A2) the set S(t) is closed ∀ t ≥ 0, whereas its dependence on t is arbitrary;

A3) the set M0 is compact in IRn ;

A4) the set-valued mapping U : IR1+n → IRr is upper semicontinuous, and

U(t, x) is a convex compact set for all (t, x) ;

A5) the function f together with the mappings S and U satisfies the Filippov

condition [8], i.e., there exists a number c such that ∀ t ≥ 0, ∀x ∈ S(t), ∀u ∈
U(t, x)

(x, f(t, x, u)) ≤ c(|x|2 + 1);

A6) the function β(·) is continuous on M0 ;

A7) the function ϕ(t, x, u) is continuous in (t, x, u) and convex in u .

(Note that, if S(t) and U(t, x) are uniformly bounded, then Assumption A5 is a

priori satisfied. However, the fulfilment of A5, both in this case and in the general

case, does not yet guarantee the existence of an admissible trajectory of system (2)–

(5) on a given interval [0, T ], the more so on [0,∞). The existence of an admissible

trajectory will be, as always is in the existence theorems for extremal problems, not

proved, but just postulated.)

All these assumptions are quite standard in the existence theorems for problems

on a fixed finite time interval. Besides of them, we make one more assumption about

the behavior of the family of functions ϕ(t, x(t), u(t)) at infinity.

For any number a , set a+ = max (a, 0), and a− = max (−a, 0) (both these

values are nonnegative), so that a = a+ − a− .

By a portion of the functional J on an interval [T ′, T ′′], let us call the number

T ′′∫

T ′

ϕ(t, x(t), u(t)) dt .

The following assumption plays a key role in our considerations.

Assumption A8. The negative parts of the portions of the cost functional tend

to zero as T ′, T ′′ →∞, T ′ < T ′′, uniformly over all admissible trajectories.
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In other words, for any ε > 0 there exists a Tε such that ∀ T ′′ > T ′ > Tε ,

∀ (x, u) ∈ Ω
T ′′∫

T ′

ϕ(t, x(t), u(t)) dt > −ε .

This condition is obviously equivalent to the following one: there exists a

function α(T ) → 0+ as T →∞, and a number T0 such that ∀T > T0, ∀ T ′′ >
T ′ ≥ T, and ∀ (x, u) ∈ Ω

T ′′∫

T ′

ϕ(t, x(t), u(t)) dt ≥ −α(T ) . (6)

Below, we will point out some cases when this assumption is a priori fulfilled.

Let us show that the fulfilment of Assumption A8 on Ω guarantees the conver-

gence of the integral (in the above extended sense) for any pair (x, u) ∈ Ω. We

will use the following simple fact.

Lemma 1. Let a numerical sequence γk have no limit (neither finite, nor

infinite). Then, there exist numbers z1 < z2 such that ∀K there are k1, k2 > K,

for which γk1 < z1 and γk2 > z2.

Proof. Since the sequence γk has no limit, it contains two subsequences con-

verging to different limits: γk1
s
→ c1 and γk2

s
→ c2, where c1 < c2 (with

possible cases c1 = −∞, c2 = +∞ ). Take arbitrary z1, z2 ∈ IR such that

c1 < z1 < z2 < c2. Then, ∀K there exists a number k1 > K in the subsequence

k1
s and a number k2 > K in the subsequence k2

s such that γk1 < z1, γk2 > z2.

The lemma is proved. 2

Lemma 2. Suppose that the functional J satisfies Assumption A8. Then, for

all (x, u) ∈ Ω the corresponding integral converges either to a finite limit or to

+∞ .

Proof. Suppose first that, for a pair (x, u) ∈ Ω, the integral does not converge

(in our extended sense), i.e., the limit

lim
T→∞

T∫

0

ϕ(t, x(t), u(t)) dt (7)

does not exist. Hence this limit also does not exist for some countable sequence

T → ∞. Then, by Lemma 1, there exist numbers z1 > z2 such that, for any T
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there are T1 > T and T2 > T1 in this countable sequence such that JT1(x, u) > z1

and JT2(x, u) < z2, and hence

T2∫

T1

ϕ(t, x(t), u(t)) dt = JT2(x, u)− JT1(x, u) < z2 − z1 = const < 0 .

But this contradicts Assumption A8. Hence our supposition is not true.

Now consider the case in which the limit (7) is equal to −∞. Then for any T ′,
there is a T ′′ > T ′ such that

∫ T ′′

0
ϕ(t, x(t), u(t)) dt <

∫ T ′

0
ϕ(t, x(t), u(t)) dt − 1,

and hence ∫ T ′′

T ′
ϕ(t, x(t), u(t)) dt < −1,

i.e., for ε = 1, we again obtain a contradiction to A8. The lemma is proved. 2

Thus, for any admissible pairs (x, u), the quantity

J(x, u) = lim
T

JT (x, u)

is well defined and J always is either finite or equal to +∞. Moreover, it follows

from the proof of Lemma 2 that A8 is the most natural assumption ensuring these

properties of the functional J .

Theorem 1 (the main theorem). Suppose that, under the above Assumptions

A1–A8, there is at least one pair (x, u) ∈ Ω for which J(x, u) < +∞. Then there

exists a pair (x0, u0) ∈ Ω at which the functional attains its minimal value (i.e.,

the problem under study has a solution).

To prove this assertion, we need several properties of the functional J and of

the set of admissible trajectories on a fixed interval [0, T ] .

3 Several properties for a fixed interval

Lemma 3. Let U(y) be an upper semicontinuous set-valued mapping IRm → IRr

with compact values. Then, on any compact (and hence on any bounded) set of y,

the values U(y) are uniformly bounded, i.e., for any compact set K ⊂ IRm, there

exist a constant R such that the set U(y) is contained in the ball BR(0) for any

y ∈ K.
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Proof. Since U(y) is an upper semicontinuous mapping, for any y there

exists a neighborhood O(y) of y such that the inclusion U(y′) ⊂ U(y) + B1(0)

holds for any y′ ∈ O(y). The union of these neighborhoods O(y) over all y ∈ K

covers the entire compactum K, and, by the definition of a compact set, a finite

subcovering can be chosen from this covering. Namely, there exist finitely many

points y1, . . . , ym ∈ K and their neighborhoods O(yi) such that the set U(y′) is

contained in U(yi) + B1(0) for any y′ ∈ O(yi), and these neighborhoods cover the

entire compactum K .

The union V of the bounded sets U(yi) + B1(0) over all i = 1, . . . , m is also

bounded, i.e., it is entirely contained in the ball BR(0) for some R. Since for

any y ∈ K, there exists a number i such that y ∈ O(yi), we have U(y) ⊂
U(yi) + B1(0) ⊂ V, and hence U(y) ⊂ BR(0). 2

Corollary. Suppose that U(t, x) is an upper semicontinuous mapping IR1+n →
IRr with compact values. Then, for any T > 0 and any bounded set Q ⊂ IRn,

there is an R = R(T, Q) such that the inclusion U(t, x) ⊂ BR(0) holds for any

t ∈ [0, T ] and any x ∈ Q.

Proof. One should apply Lemma 3 to the mapping U(y), where y = (t, x),

and to the compact set K = [0, T ]×Q. 2

Lemma 4. Let U(t, x) be an upper semicontinuous mapping with compact

values, let the function f(t, x, u) together with mappings S and U satisfy A5

(i.e., the Filippov condition), and let M0 ⊂ IRn be a bounded set. Then, for any

T, there are constants DT , D′
T , RT such that the estimates

|x(t)| ≤ DT , |ẋ(t)| ≤ D′
T , |u(t)| ≤ RT (8)

hold almost everywhere on [0, T ] for any solution to system (2)–(5).

Proof. Consider the function z(t) = |x(t)|2 + 1. For this function, we have

ż = 2(x, f) on the trajectories of system (2), and hence it follows from A5 that

ż ≤ 2c(|x|2 + 1), i.e., ż ≤ 2cz. Since z(t) ≥ 0, we obtain the inequality z(t) ≤
z(0)e2ct for any t ≥ 0. If |M0| ≤ r, then we have z(t) ≤ (r2 + 1) e2cT on the

interval [0, T ], which implies the first desired estimate in (8).

Since |x(t)| ≤ DT , by corollary of Lemma 3 we have |u(t)| ≤ RT with a

constant RT ; therefore, the triple (t, x(t), u(t)) always belongs to the compact set

[0, T ]×BDT
(0)×BRT

(0). Since the function f is continuous, it is also bounded on

this compact set by a constant D′
T . Thus, |ẋ(t)| ≤ D′

T . The lemma is proved. 2

Thus, the set of solutions x(t) to system (2)–(5) is uniformly bounded and

uniformly Lipschitz continuous, and the set of controls u(t) is uniformly bounded.

Hence, by the Ascoli-Arzela and Alaoglu theorems [13], we obtain the following
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Corollary. The set of solutions x(t) to system (2)–(5) is precompact in the

space C[0, T ], and the corresponding set of controls u(t) is precompact in the space

L∞[0, T ] in the weak-* topology (i.e., in the topology determined by functionals from

L1[0, T ] ).

Let ΩT be a set of all (x, u) ∈ AC[0, T ] × L∞[0, T ] satisfying relations (2)–

(5) on [0, T ]. It follows from the above corollary that ΩT is a precompact set

with respect to the product of the uniform and weak-* topologies. As is known,

the weak-* topology on bounded sets in the space L∞[0, T ] is metrizable (because

L1 is a separable space), and hence, to study this topology, it suffices to consider

converging sequences.

Lemma 5. The set ΩT is closed w.r.t. the uniform convergence of x(t) and

the weak-* convergence of u(t); namely, if (xk, uk) ∈ ΩT , xk =⇒ x0,

uk
weak−∗−→ u0 , then (x0, u0) ∈ ΩT .

Proof. The closedness of constraints x(0) ∈ M0 and x(t) ∈ S(t) obviously

follows from the fact that the sets M0 and S(t) for all t ≥ 0 are closed. The

closedness of constraint ẋ = f(t, x, u) can be easily obtained from the linearity of

f in u if one passes to the integral form of this equation.

The main difficulty is to show that the inclusion u(t) ∈ U(t, x(t)) is also closed.

This is a nontrivial fact, which is of intrinsic interest. In order not to go far away

from the main topic, we do not prove this fact here. We only note that it follows

from the closedness of graph of the mapping U(t, x) (which follows from its upper

semicontinuity) and the convexity of its values (e.g., see [10, Secs. 8.5 and 10.6] for

details). The lemma is proved. 2

Summarizing the facts obtained, we arrive at the following assertion.

Lemma 6. In the space of pairs (x, u) ∈ AC[0, T ]× L∞[0, T ], the set ΩT is

a metrizable compactum in the product of the topology generated by the norm ||x||C
and the weak-* topology of u .

Now, we turn to the functional JT assumed to be defined on the space C[0, T ]×
L∞[0, T ].

Lemma 7. Let a function ϕ satisfy Assumption A7, and let be given sequences

xk =⇒ x0 (uniformly) and uk
weak−∗−→ u0 (weakly in L∞ with respect to L1 ) on

the interval [0, T ]. Then

T∫

0

ϕ(t, x0(t), u0(t))dt ≤ lim inf
k→∞

T∫

0

ϕ(t, xk(t), uk(t))dt,
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i.e., functional
∫ T

0
ϕ(t, x, u) dt is lower semicontinuous with respect to this con-

vergence.

This fact is widely known (e.g., see [9]–[12].) This and the continuity of β(x)

imply that our functional JT is also lower semicontinuous with respect to the above

convergence.

4 Proof of the main theorem

Now, we return to the problem of infinite interval. Introduce a convergence in the

function spaces on [0,∞) .

Let C[0,∞) be the space of all continuous n -dimensional functions on [0,∞).

We shall write xk =⇒ x0 for the elements of this space if xk uniformly converges

to x0 on any interval [0, T ].

We shall write uk
weak−∗−→ u0 for the elements of the space L∞[0,∞) introduced

above if uk weakly-* converges to u0 on any interval [0, T ].

The admissible set Ω can be treated as a subset of the space C[0,∞)×L∞[0,∞).

As follows from its definition, Ω consists of all the pairs (x, u) whose restriction

to any interval [0, T ] belongs to the corresponding set ΩT .

Lemma 8. The admissible set Ω is closed with respect to the above conver-

gence, i.e., if (xk, uk) ∈ Ω, xk =⇒ x0 , and uk
weak−∗−→ u0, then (x0, u0) ∈ Ω.

Proof. By definition, for any T > 0 we have (xk, uk) ∈ ΩT , xk =⇒ x0 , and

uk
weak−∗−→ u0 on the interval [0, T ]. Since the set ΩT is closed by Lemma 5, we

have (x0, u0) ∈ ΩT . This means that the inclusion (x0, u0) ∈ Ω also holds on the

entire half-line. The lemma is proved. 2

Let us introduce one more definition, which is convenient to use in what follows.

The quantity

ΘT (x, u) =

∞∫

T

ϕ(t, x(t), u(t)) dt

will be called the tail of the functional J on the interval (T,∞). This quantity is

well defined, because, under Assumption A8, the integral converges (in the extended

sense) for any pair (x, u) ∈ Ω .

Lemma 9. If Assumption A8 is satisfied on Ω, then the negative parts of the

tails of the functional tend to 0 as T →∞ uniformly over all (x, u) ∈ Ω.
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Moreover, for the same function α(T ) and the same T0 (appearing in A8), the

estimate

ΘT (x, u) ≥ −α(T ) (9)

holds for all (x, u) ∈ Ω and all T ≥ T0.

Proof. Suppose that A8 is satisfied, i.e., there is T0 and α(T ) → 0+ such

that, for all T > T0 and all T ′′ > T ′ ≥ T, the estimate

T ′′∫

T ′

ϕ(t, x(t), u(t)) dt ≥ −α(T )

holds for any pair (x, u) ∈ Ω. Then, fixing T ′ and letting T ′′ tend to +∞, we

obtain the desired inequality (9). 2

Now, we establish an analog of Lemma 7 concerning the lower semicontinuity of

the functional for the infinite interval.

Lemma 10. Let Assumptions A1–A8 be satisfied. Then the functional J

is lower semicontinuous on Ω in the above convergence, i.e., if (xk, uk) ∈ Ω,

xk =⇒ x0, and uk
weak−∗−→ u0, then

J(x0, u0) ≤ lim inf
k→∞

J(xk, uk) .

Proof. First, by Lemma 8, (x0, u0) ∈ Ω. Next, let lim inf
k→∞

J(xk, uk) = µ0.

We must show that J(x0, u0) ≤ µ0 .

Assume again that β(·) ≡ 0. For brevity, denote ϕk(t) = ϕ(t, xk(t), uk(t)).

For any T, the functional J(xk, uk) can be represented in the form

J(xk, uk) =

T∫

0

ϕk(t) dt + ΘT (xk, uk).

Since J satisfied Assumption A8, Lemma 9 says that, for any T ≥ T0, we have

ΘT ≥ −α(T ), and so

T∫

0

ϕk(t) dt = J(xk, uk)−ΘT (xk, uk) ≤ J(xk, uk) + α(T ) .

Hence, for any fixed T, we have

lim inf
k→∞

∫ T

0
ϕk(t) dt ≤ lim inf

k→∞
J(xk, uk) + α(T ) = µ0 + α(T ) .
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By Lemma 7 , this implies

T∫

0

ϕ0(t) dt ≤ µ0 + α(T ) .

Now, letting T →∞ and taking into account Lemma 2, we finally obtain

J(x0, u0) = lim
T→∞

T∫

0

ϕ0(t) dt ≤ µ0 .

The lemma is proved. 2

The next example shows that Assumption A8 in this lemma is essential: if one

neglects it, the lemma ceases to be true.

Example. Consider the sequence of functions uk(t) equal to −1 for t ∈
[k, k + 1] and to 0 in other cases. This sequence weakly-* converges in our sense

to u0 ≡ 0. Set

ϕ(t, x, u) = u, β(x) = 0, f(t, x, u) = 0, x(0) = 0, U(t, x) = [−1, 0].

Then all the assumptions of Lemma 10, except for Assumption A8, are satisfied.

But, in this case, the inequality

∞∫

0

ϕ(u0(t)) dt ≤ lim inf
k→∞

∞∫

0

ϕ(uk(t)) dt

does not hold, because the left-hand side equals zero, while, for all k, the integral

on the right-hand side is

∞∫

0

ϕ(uk(t)) dt =

k+1∫

k

(−1) dt = −1.

Proof of the main theorem. Take an arbitrary minimizing sequence

(xk, uk) ∈ Ω : J(xk, uk) → infJ = J∗.

We must show that there exists a pair (x, u) ∈ Ω such that J(x, u) = J∗ .

(1) Take an arbitrary T1 > 0. By Lemma 6 , the set ΩT1 is metrizable and

compact. Hence, the sequence (xk, uk) contains a subsequence (x1
k, u

1
k) converging

on [0, T1] to a pair (x1
0, u

1
0) ∈ ΩT1 . (Saying that x1

k is a subsequence of the sequence

xk, we mean that there exists an increasing sequence of integers nk →∞ such that

x1
k = xnk

for any k. )
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(2) Take an arbitrary T2 > T1+1. As in the preceding case, the sequence (x1
k, u

1
k)

contains a subsequence (x2
k, u

2
k) converging on [0, T2] to a pair (x2

0, u
2
0) ∈ ΩT2 .

Then, since (x2
k, u

2
k) is a subsequence of the sequence (x1

k, u
1
k), and their limits

coincide on [0, T1], namely, x2
0 ≡ x1

0 and u2
0 ≡ u1

0, i.e., the new limit pair is an

extension of the old pair to the interval [T1, T2].

(3) Next, take an arbitrary T3 > T2+1 and choose a subsequence (x3
k, u

3
k) from

the sequence (x2
k, u

2
k), and so on.

Thus, at the m th step of this procedure, we have Tm > Tm−1 + 1 and a

sequence (xm
k , um

k ) converging to a pair (xm
0 , um

0 ) ∈ ΩTm , which coincides with

(xm−1
0 , um−1

0 ) on the preceding interval [0, Tm−1].

Now, define the pair (x0, u0) ∈ AC × L∞[0,∞) coinciding with (xm
0 , um

0 ) on

each interval [0, Tm]. This pair is well defined because of the coincidence (xk
0, u

k
0) ≡

(xm
0 , um

0 ) on the interval [0, Tm] for any k > m. Then, on every [0, Tm] we have

(x0, u0) ∈ ΩTm which, by the definition of Ω, implies that (x0, u0) ∈ Ω on the

entire half-line.

(4) Consider the diagonal sequence (xk
k, u

k
k). Obviously, it has the following

property: for any fixed m and all k ≥ m, this sequence is contained in the

subsequence (xm
i , um

i ), i = 1, 2, ..., and hence it converges to (xm
0 , um

0 ) = (x0, u0)

on the interval [0, Tm]. And since Tm → ∞, the sequence (xk
k, u

k
k) converges

to (x0, u0) on any interval [0, T ], i.e., by definition, it converges in the space

C[0,∞)× L∞[0,∞).

(5) Finally, consider the functional J(xk
k, u

k
k). By Lemma 10, it is lower semi-

continuous w.r.t. the above convergence; therefore,

J(x0, u0) ≤ lim inf
k→∞

J(xk
k, u

k
k) = J∗ ,

and the inequality J(x0, u0) < J∗ is impossible, since J∗ = inf J. Hence we obtain

J(x0, u0) = J∗ , Q.E.D. 2

Remark. Since, for any T > 0, the convergence in ΩT can be determined

by a certain metric ρT , the convergence in Ω can also be given by a metric, for

example, chosen in the form of standard combination

ρ((x′, u′), (x′′, u′′)) =
∞∑

m=1

1

2m
F (ρTm((x′, u′), (x′′, u′′))) ,

where

Tm →∞ and F (z) =
z

1 + z
.

In steps (1)–(4) of the above proof, we actually proved that each sequence of elements

of Ω contains a converging subsequence, i.e., that Ω is a compact set in this metric.
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Thus, our main theorem completely fits in the framework of the general Weierstrass

principle: a lower semicontinuous function on a compact set attains its infimum.

5 Special cases

We present several conditions under which Assumption A8 is satisfied.

1. The simplest condition, which is mentioned in many papers and which, indeed,

is most often satisfied in special problems, is that ϕ(t, x, u) is bounded below by

an integrable function, i.e., there exists an l(t) ∈ L1(0,∞), l(t) ≥ 0, such that

ϕ(t, x(t), u(t)) ≥ −l(t) a.e. on (0,∞)

for any pair (x, u) ∈ Ω. In this case, we have an obvious estimate for the functional

portions,

T ′′∫

T ′

ϕ(t, x(t), u(t)) dt ≥
T ′′∫

T ′

−l(t) dt ≥
∞∫

T ′

−l(t) dt = −α(T ′),

and since α(T ′) → 0 as T ′ →∞, our condition (6) is satisfied.

2. Suppose that all the constraints in the problem are independent of t, and

the functional has the form

J = β(x(0)) +

∞∫

0

e−rtL(x, u) dt → max, (10)

where the function L is continuous in (x, u) and concave (i.e., upper convex) in

u, and r is a positive number (it is called the discount factor). Such problems are

typical of dynamical models in mathematical economics [1]–[7].

Let us assume that there exist nonnegative numbers p, h, q, C, and K such

that the estimates

(x, f(x, u)) ≤ p (|x|2 + h), (11)

L(x, u) ≤ C|x|q + K (12)

hold for all x ∈ S and u ∈ U(x) . Let also p q < r. Then the function

ϕ(t, x, u) = e−rtL(x, u)

is bounded from above by an integrable function and hence, according to the pre-

ceding case 1, Assumption 8 is satisfied for the maximization problem.
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Indeed, consider the function z(t) = |x(t)|2 + h. It follows from (11) that |ż| ≤
2 pz, hence z(t) ≤ z(0) e2p t, and therefore, |x(t)| ≤ C1 ept with some constant C1.

Then we have L(x, u) ≤ C2 epq t + K with a constant C2, and so,

e−rtL(x, u) ≤ C2 e(pq−r)t + K e−rt = l(t),

where the function l(t) is integrable on (0,∞), because pq − r < 0 .

3. Consider also the case where the problem has the same form as in case 2, but

the controlled system is linear (with constant coefficients), ẋ = Ax + Bu, and the

control set U is independent of x. Suppose that there is a number p such that all

the eigenvalues λ of the matrix A have Reλ < p and that there are nonnegative

numbers q, C, and K such that, for all x ∈ S and u ∈ U the estimate (12)

holds, and moreover, pq < r. Then the family of functions ϕ(t, x, u) = e−rtL(x, u)

is again bounded from above by an integrable function, and hence Assumption A8

is satisfied.

Indeed, as is known in this case, there is a constant C1 such that any solution

to the system ẋ = Ax + Bu, u ∈ U, with any initial value x(0) ∈ M0 satisfies the

estimate |x(t)| ≤ C1 ept. Next, one must repeat the corresponding argument of the

preceding case.

6 Comparison with well-known results

The most general results concerning this problem were obtained by Balder [3]. Let

us compare his and our assumptions about the behavior of the functional at infinity.

In Balder’s paper, the notion of strong uniform integrability of a family of functions

was introduced, and it was assumed that the family {ϕ−(t, x(t), u(t))} has this

property.

Let M be a measurable set on the real line. By L1(M) we denote the space

of measurable Lebesgue integrable functions, and by L+
1 (M) we denote the set of

all nonnegative functions from L1(M) .

Recall that a set of functions G ⊂ L1(M) is said to be uniformly integrable (on

M) if, for any ε > 0, there exists a δ > 0 satisfying the following condition: if a

measurable set E ⊂ M has mes E < δ, then

∫

E
|g(t)| dt < ε for any g ∈ G.

13



Definition 1 (Balder [3]). A set of functions G ⊂ L1(M) is said to be strongly

uniformly integrable if, for any ε > 0, there exists an h ∈ L+
1 (M) such that

∫

E(|g|>h)

|g(t)| dt < ε for any g ∈ G,

where E(f > h) = { t ∈ M | f(t) > h(t)} .

It is easy to see that this property coincides with the uniform integrability for a

set M of a finite measure and it is stronger than the latter property for a set of an

infinite measure.

Instead of Definition 1, we shall use the following equivalent Definition 2, which

seems to be more convenient.

Let h, g ∈ L+
1 (M). We shall say that h majorizes g if h(t) ≥ g(t) a.e. on

M, and h majorizes g with an integral accuracy ε > 0 if
∫

M

(g(t)− h(t))+ dt < ε .

Definition 2. A set of functions G ⊂ L1(M) is said to be strongly uniformly

integrable if, for any ε > 0, there exists a function h ∈ L+
1 (M) majorizing |g(t)|

with the integral accuracy ε for any g ∈ G .

Lemma 11. Definition 1 and Definition 2 are equivalent.

Proof. Without loss of generality, we assume that G ⊂ L+
1 (M). Since h ≥ 0,

we always have g − h ≤ g and hence
∫

M

(g − h)+ dt =
∫

E(g>h)

(g − h) dt ≤
∫

E(g>h)

g dt .

Therefore, any set G satisfying Definition 1 also satisfies Definition 2.

Let us prove the converse. Let a set G satisfy Definition 2. Assume that it does

not satisfy Definition 1, i.e., there exists an ε > 0 such that, for any h ∈ L+
1 (M),

there is a gh ∈ G for which
∫

Eh

gh dt ≥ ε > 0, where Eh = E(gh > h). (13)

Fix this ε. By Definition 2, there exists an h0 ∈ L+
1 (M) such that the inequality

∫

M

(g − h0)
+ dt < ε/2

holds for any g ∈ G . Then we also have
∫

M

(g − h)+ dt < ε/2

14



for any h ≥ h0 . Therefore, for any h ≥ h0, we have

∫

M

(gh − h)+ dt =
∫

Eh

(gh − h) dt < ε/2 ,

and hence, with account of (13) we obtain

∫

Eh

h dt > ε/2 .

By definition, we always have

gh − h/2 = (gh − h) + h/2 > h/2 on Eh ;

whence, in view of the preceding inequality, we obtain

∫

Eh

(gh − h/2) dt > ε/4 ,

and since E(gh > h/2) ⊃ E(gh > h) = Eh , we have

∫

E(gh>h/2)

(gh − h/2) dt =
∫

M

(gh − h/2)+ dt > ε/4 .

This inequality holds for any h ≥ h0 . But this contradicts Definition 2, according

to which there exists an h ≥ h0 such that ∀ g ∈ G

∫

M

(g − h/2)+ dt < ε/4 .

The lemma is proved. 2

Consider the case M = (0, +∞). Let a set Φ ⊂ L1(0,∞) be such that the

family of functions {ϕ− | ϕ ∈ Φ} is strongly uniformly integrable. Using Def. 2

and the relation a− = (−a)+, one can easily show that this condition is equivalent

to the following one: for any ε > 0, there is an hε ∈ L+
1 (0,∞) such that ∀ϕ ∈ Φ

∞∫

0

(ϕ + hε)
− dt < ε.

Let us show that, in this case, our condition about the uniform convergence to zero

of the negative part of the functional portions also holds for the set Φ. For any

T ′ < T ′′, we have
T ′′∫

T ′

(ϕ + hε)
− dt ≤

∞∫

0

(ϕ + hε)
− dt < ε.
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Since hε is integrable, there exists a Tε such that

∞∫

Tε

hε dt < ε.

Represent ϕ in the form ϕ = (ϕ + hε) + (−hε). Since the function (·)− is

sublinear and hε ≥ 0, we have ϕ− ≤ (ϕ + hε)
− + (−hε)

− = (ϕ + hε)
− + hε.

Then, for any T ′′ > T ′ > Tε, we obtain

T ′′∫

T ′

ϕ− dt ≤
T ′′∫

T ′

(ϕ + hε)
− dt +

T ′′∫

T ′

hε dt < ε + ε = 2ε,

whence, again by the sublinearity of the function (·)−, we get



T ′′∫

T ′

ϕdt



−

≤
T ′′∫

T ′

ϕ− dt < 2ε ,

which implies that Assumption A8 for the set Φ is also satisfied.

But the converse statement is obviously not true, even because the functions

satisfying A8 may not be Lebesgue integrable on (0,∞) (i.e., their integrals may

not converge absolutely). For example, if, instead of the functions ϕ(t) ∈ Φ, we

consider ϕ(t) + 1
t+1

sin t, then the new functions would not belong to L1(0,∞),

while the portions of their integrals would still satisfy estimate (6), because

T ′′∫

T ′

sin t

t + 1
dt = − cos t

t + 1

∣∣∣∣∣∣∣

T ′′

T ′

−
T ′′∫

T ′

cos t

(t + 1)2
dt → 0

as T ′, T ′′ → ∞. Thus, the requirement imposed in [3] on the family of functions

to be strongly uniformly integrable is more restrictive than our Assumption A8.

If one even weakens the condition of [3] by requiring that the family of func-

tions {ϕ−(t)} be strongly uniformly integrable only on the interval (T,∞) for a

sufficiently large T, then, by the same reason, this weakened requirement remains

to be strictly stronger than our Assumption A8.

7 Possible generalizations

1. If problem (1)–(5) contains additional inequality constraints of the form

Ji = βi(x(0)) +

∞∫

0

ϕi(t, x, u) dt ≤ 0, i = 1, . . . , m, (14)
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where the functions βi and ϕi satisfy the same assumptions as β and ϕ (also

including Assumption A8) and the integral over [0,∞) is still understood as the

limit of integrals over the intervals [0, T ] as T → ∞, then it is clear that the

main theorem remains true and the proof does not change. Indeed, the functionals

Ji are lower semicontinuous on the ”old” set Ω (which does not take constraint

(14) into account) with respect to the convergence introduced above. Hence the set

of pairs (x, u) ∈ Ω satisfying constraint (14) is a closed set, and then the new set

of admissible trajectories, which is now determined by constraints (2)–(5) and (14),

is still compact.

2. The problem can also contain additional equality constraints of the form

Fj = βj(x(0)) +

∞∫

0

fj(t, x, u) dt = 0, j = 1, . . . , k, (15)

where the functions fj satisfy Assumption A1 (i.e., they are continuous in (t, x)

and linear in u ) and the βj satisfy Assumption A6 (i.e., they are continuous).

In this case, we impose the requirement that the functions fj and −fj satisfy

Assumption A8, i.e., that

T ′′∫

T ′

fj(t, x(t), u(t)) dt → 0 as T ′, T ′′ →∞

uniformly over the ”old” set Ω. The last condition is equivalent to the condition

that, for any admissible pair, the integrals in (15) have finite values and, moreover,

converge to their values uniformly over all admissible trajectories. In this situation,

the main theorem is again true, since the set of pairs (x, u) ∈ Ω satisfying (15) is

closed in the introduced convergence.

Constraint (15) allows one to consider final equality constraints on the endpoint

of the trajectory x(∞) = limT→∞ x(T ) of the form

(aj, x(∞)) = cj, j = 1, . . . , k,

where aj ∈ IRn, which can equivalently be written in the form

(aj, x(0)) +

∞∫

0

(aj, f(t, x(t), u(t))) dt = cj, j = 1, . . . , k .

Here one should assume that the functions ±(aj, f(t, x, u)) satisfy Assumption A8.

3. The problem containing, instead of the controlled system, a differential inclu-

sion ẋ ∈ V (t, x), where the set-valued mapping V satisfies Assumption A4, can
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easily be reduced to the problem considered above. To do this, one should pass to

the system ẋ = u, u ∈ V (t, x).

4. In the present paper we assume that system (2) is linear in the control, and

the set U(t, x) is convex and compact. In the case of general nonlinear system, one

should require that this set be bounded, while convex and closed be the velocity set

of extended system [10, 3]

ẏ = ϕ(t, x, u) + v, ẋ = f(t, x, u), u ∈ U(t, x), v ≥ 0.

In this case, one should consider the convergence of trajectories (y(t), x(t)) in

the space C[0, T ] × Cn[0, T ] and to apply a certain version of the measurable

selection theorem, e.g., Filippov’s inclusion lemma [8], in order to represent the

limit trajectory as a solution to system (2) for some control u(t).

Here we do not consider this general case, because the corresponding technical

complications concern the problem on a fixed interval (and are well known), while

our goal is to show, as clearly as possible, the specificity of the problem on infinite

interval. Note only, that this general case completely falls into the abstract scheme

proposed below.

8 Abstract scheme

The above method of the proof also remains valid in the following abstract setting.

Let be given an increasing countable family of sets Tn ⊂ Tn+1 ⊂ ..., n = 1, 2, ...,

and < =
⋃

Tn . On each Tn , there is a set of functions Ω(Tn) = {w : Tn → Z }
ranging in some set Z of images, and a functional Jn : Ω(Tn) → IR. Assume that

for any n we have Ω(Tn+1)|Tn ⊂ Ω(Tn).

Let Ω be the set of all functions w : < → Z such that, for any n, the

restriction wn = w |Tn belongs to Ω(Tn). Then, for each function w ∈ Ω one can

define the functionals Jn(w) = Jn(wn), n = 1, 2, . . . , and hence one can consider

the functional

J(w) = lim
n→∞ Jn(wn).

More precisely, this functional is considered only for those w ∈ Ω for which this

limit (finite or infinite) exists.

Now, we pose the problem: J(w) → min over all w ∈ Ω for which the

functional exists.

Assumptions.

S1. For each n, the set of functions Ω(Tn) is compact in a certain topology

τn having a countable base (and hence metrizable); moreover, the mapping πn :
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Ω(Tn+1) → Ω(Tn) associating to each function w(t) on the set Tn+1 its restriction

to Tn is continuous.

S2. For each n, the functional Jn is lower semicontinuous on Ω(Tn) in the

topology τn .

S3. There exists a number sequence αN → 0+ and a number N0 such that,

for any N > N0 and any n2 > n1 ≥ N, the inequality

Jn2(w)− Jn1(w) ≥ −αN

holds for any w ∈ Ω or, which is the same,

(Jn2(w)− Jn1(w))− → 0 as n1, n2 →∞ , n1 < n2 ,

uniformly over all w ∈ Ω.

Thus, the differences Jn2(w) − Jn1(w) play the role of the functional portions

in this abstract scheme.

Under the above assumptions, an analog of Lemma 2 is valid, which guarantees

the existence of the limit of the functional for any w ∈ Ω (as in above, this limit is

either finite or equal to +∞), the set Ω is metrizable in the topology of convergence

on each Tn , the functional J is lower semicontinuous on Ω with respect to this

convergence, and the following assertion holds.

Theorem 2. Suppose that there exists a w ∈ Ω for which J(w) < +∞.

Then the above problem has a solution, i.e., J attains its minimum on Ω .

Proof. The proof repeats the main steps of the proof of Theorem 1. 2

It is also possible to propose a yet more abstract scheme in which there are no

sets Tn , the function spaces Ω(Tn) are replaced by an arbitrary projective family

of compact sets Ωn with countable bases, and Ω is the projective limit of this

family. But for now, there are no convincing motivations to study the problem in

this setting (and, moreover, to avoid the assumption that the topologies τn have

countable bases); so, we do not consider it in detail here.
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