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Abstract

We consider the class of optimal control problems, linear in the control,

with control bounded by linear inequalities, and with terminal equality and
inequality constraints. Both the control and state variables are multidimen-

sional, and the examined control is totally singular. For such problems we

suggest quadratic-order necessary and su�cient conditions for a weak and a
so-called Pontryagin minimum, the last being a minimum of an intermediate

type between classic weak and strong minima. Necessary conditions transform

into su�cient ones only by strengthening an inequality, what is similar to
conditions in the classical analysis and calculus of variations (adjoint pairs of

conditions).
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1 Statement of the problem and preliminaries

Let us consider the control system:

_x = f0(x; t) + F (x; t)u = f0(x; t) +

kX
i=1

uifi(x; t); (1)

where all the functions f0; : : : ; fk are de�ned in an open set Dx;t in Rn � R and

take values in Rn
; they are assumed to be C2�smooth in (x; t): Here fi(x; t); i =

1; : : : ; k; are the columns of the matrix F (x; t):

We consider this system on a �xed time interval [t0; t1]. Denote x0 = x(t0); x1 =

x(t1); and p = (x0; x1), and consider the following optimal control problem A:

J = '0(p) �! min; (2)
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'i(p) � 0; i = 1; : : : ; �; (3)

K(p) = 0; (4)

u(t) 2 U; (5)

(x(t); t) 2 Dx; p 2 Dp; (6)

where '0; : : : ; '�; K are C2�smooth functions (K is multidimensional), de�ned in

an open set Dp in R
2n
; and U is a closed convex solid set in Rk

: The sets Dx;t and

Dp are usually just implied, but not indicated explicitly.

Without loss of generality we may put t0 = 0 and t1 = T , denoting then

x(t1) = xT : Note a well known important property of system (1) (see e.g. [41, 33]).

Theorem 1.1. Let um 2 L
k
1
[0; T ]; and xm be the solution of (1) for um

with an initial condition xm(0) = am: Let um
weak-*�! u0 2 L

k
1[0; T ]; am ! a0;

and x be the solution of (1) for u0 with the initial condition x0(0) = a0:

Then xm ) x0 (uniformly).

In Problem A we will seek a minimumamong all absolutely continuous n-vector

functions x(t) and bounded measurable k-vector functions u(t): We do not study

here the problem of existence of minimum. At least we can say, that if U is a convex

compactum, x0 is �xed, every solution x(t) of system (1) entirely lies in Dx;t; and

its endpoints (x0; xT ); satisfying (3), (4), belong to Dp; then the existence follows

from the known Filippov's lemma [42], which, in its turn, follows from the theorem

of Alaoglu and Theorem 1.1.

Introduce the space W = AC
n�Lk1[0; T ] with elements w = (x; u) ; and equip

it with the norm jjwjj= jx(0)j+jj _xjj1+jjujj1: (Here and throughout the paper jj�jjp
stands for the norm in the Banach space Lkp[0; T ]; and jj � jjC stands for the norm

in the space of continuous n-vector functions Cn[0; T ]:) One can easily see, that for

solutions of (1) the convergence of a sequence wm to a point w0 in the norm of W

is equivalent to its convergence to w0 in the norm jjwjj1 = jjxjjC + jjujj1; hence
a local minimumw.r.t. the norm of W is a common weak minimum. As usual, by

a strong minimum we call a minimum w.r.t. the seminorm jjwjj0 = jjxjjC; the u

being free.

Now we introduce also another type of minimum, intermediate between the

weak and strong minima. Let ŵ = (x̂; û) be an admissible pair.

De�nition 1.1. We say that ŵ is a Pontryagin minimum point in Problem A,

if for all N there exists an " > 0 such that ŵ is a minimum point in Problem A on

the set

jjx� x̂jjC < "; jju� ûjj1 < "; jju� ûjj1 � N: (7)
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In other words, there can exist no sequence wm = (xm; um) such that

jjxm � x̂jjC ! 0; jjum � ûjj1 ! 0; jjum � ûjj1 � O(1); (8)

all constraints are satis�ed, and for all m J(pm) < J(p̂).

Sequences that satisfy (8), we call Pontryagin sequences, converging to ŵ: The

set of all such sequences we denote by �(ŵ): The di�erences �wm = wm � ŵ

are Pontryagin sequences, converging to zero; we call them Pontryagin varia-

tions. Thus, the Pontryagin minimum (briey, the �-minimum) is the minimum

in the class of all Pontryagin sequences (or, respectively, in the class of all Pontrya-

gin variations). This type of minimum was introduced by A.Ja.Dubovitskii and

A.A.Milyutin as a natural extension of minimum in the class of uniformly small

and needle-type variations of the control. The importance of this notion is that

the Pontryagin Maximum Principle (MP) is a necessary condition of the �rst or-

der for the Pontryagin minimum, i.e. for the minimum in the class of Pontryagin

variations. (It is said often that the MP is a necessary condition for the strong

minimum, but this assertion is weaker than the above one.) Moreover, Dubovitskii

and Milyutin showed [3], [10], that the ful�llment of MP for a trajectory is equiv-

alent to its stationarity in the class of all possible Pontryagin variations. As we

told already, the following relations for these three types of minimum are true:

weak min < Pontryagin min < strong min;

and both the "inequalities" are strict: it is not di�cult to provide corresponding

counterexamples, see e.g. [33]. In particular case, when the admissible control set

U is bounded, the �-minimum is in fact the minimum w.r.t. the norm jjwjj1 =

jjxjjC + jjujj1; and we call it the L1-minimumw.r.t. the control.

The �-minimum for Problem A is, generally, rather far from the strong min-

imum (unlike the case of problems with the general control system, nonlinear in

the control, where these two types of minimum are rather close to each other; see

[6], [7]). However, note here a special case, when these two types of minimum are

equivalent: it is when U is bounded, and (8 t) û(t) is an extreme point of U: (The

set of all extreme points of U is denoted by exU:)

Proposition 1.1. Let U be an arbitrary convex compactum, and û(t) 2 exU
a.e. Suppose also that rankF (x̂(t); t) = k 8t; i.e. the vectors fi(x̂(t); t); i =

1; :::; k are linearly independent. Then the � -minimum is equivalent to the strong

minimum.

The proof readily follows from the next
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Lemma 1.1. Let x̂; û satisfy equation (1), xm ) x̂; um 2 U; U is a convex

compactum, and û(t) 2 exU a.e. Then jjum � ûjj1 �! 0:

The proof follows from another two lemmas.

Lemma 1.2. Under the �rst four conditions of Lemma 1.1, um
weak-*�! û (as

elements of L1 w.r.t. L1).

Proof. Since U is bounded, then due to the theorem of Alaoglu, passing if

necessary to a subsequence, one can consider um(t)
weak-*�! u�(t): Since U is closed

and convex, u�(t) 2 U a.e. Let x� be the solution of system (1) for this u� with

the initial condition x�(0) = x̂(0): By Theorem 1.1 xm ) x�; whence due to

the uniqueness of the limit we have x� = x̂; thus x̂ is the solution of (1) for u�

with the initial value x̂(0): But then, since the vectors fi(x̂(t); t); i = 1; :::; k are

linearly independent, the value of control is uniquely determined by x̂(t); and so

u�(t) = û(t) a.e. Thus, um
weak-*�! û (for the chosen subsequence; hence, for any

subsequence of the initial sequence there is a sub-subsequence with this property,

hence it is true for the whole initial sequence).

Lemma 1.3. Let U be a convex compactum, um(t) 2 U; and

um(t)
weak-*�! û(t); where (8 t) û(t) 2 exU: Then jjum � ûjj1 �! 0:

Proof. Let p(t); jp(t)j = 1 8t; be a supporting vector for U at the point û(t);

i.e.

(p(t); U ) � (p(t); û(t)): (9)

(Such a p(t) does exist by the measurable selection theorem [43].) Since
R
p(t)(um�

û)dt ! 0; then from (9), from the extremality of û(t) and the boundedness of U

one can show that
R jum � ûjdt ! 0: To understand this e�ect, one may con-

sider, for example, U = fu 2 R
2j u21 � u2g; û = (0; 0); p(t) = (0;�1): IfR

pumdt =
R
u2;mdt! 0; then

R
u
2
1;mdt! 0; whence obviously

R ju1;mjdt! 0 too,

i.e.
R
(ju1;mj+ ju2;mj)dt! 0; q.e.d. The general case involves a bit more technical

details, see [41].

2 Maximum Principle and singular controls

Let ŵ = (x̂; û) be a �-minimumpoint in ProblemA. Then it satis�es the Pontryagin

Maximum Principle (MP), which says, that there exist Lagrange multipliers � =

(�0; : : : ; ��) � 0; � 2 Rd(K)
; and a Lipschitz n�vector function  (t) (the adjoint,

or costate variable), the collection of which we denote by � = (�; �;  ); and which
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generate the terminal Lagrange function l[�](p) = � �'(p) + � �K(p);

where ' = ('0; : : : ; '�); and the Pontryagin function

H[�](x; u; t) =  [f0(x; t) + F (x; t)u] = ( ; f0(x)) +
P
ui( ; fi(x));

such that the following conditions hold:

a) normalization condition: j � j + j � j= 1 (here j � j is an arbitrary norm in

the �nite-dimensional space),

b) complementary slackness: �i'i(p̂) = 0; i = 1; :::; �;

(in the sequel we assume, without loss of generality, that 'i(p̂) = 0; 8 i = 1; :::; �;

i.e. all indices i are active, and we denote I = f0; 1; ::::; �g ),
c) adjoint, or costate equations: _ = �Hx[�]; _H[�] = Ht[�];

d) transversality conditions:  (0) = l
0
x0
[�];  (T ) = �l0xT [�];

e) maximality condition: for all t

max
u2U

H[�](x̂(t); u; t) = H[�](x̂(t); û(t); t): (10)

The set of all � = (�; �;  ); satisfying conditions (a){(e) for the trajectory ŵ;

we denote by �(ŵ); or, having in mind that the trajectory ŵ will be the same

throughout the paper, simply by �: Obviously, � is a �nite-dimensional compact

set, and generally it may consist of more than a single point. (In particular case,

when � consists of a single point, we will write � = f�g:) We say that the trajectory

ŵ is stationary, or extremal, if �(ŵ) is nonempty. The MP guarantees that if ŵ

is a �-minimum point in Problem A, then the set �(ŵ) is nonempty, i.e. ŵ is an

extremal.

It is well known, however, that the MP is only a necessary, but not a su�-

cient condition (like any other �rst order necessary condition for general nonconvex

problems): its ful�llment does not guarantee even a weak minimum at ŵ. Espe-

cially it is true for our Problem A . Because of this, many authors made inves-

tigations on higher order (mostly "second order") conditions of a local minimum

(for some particular statements of Problem A) since early 1960-s; we just mention

here Kelley, Kopp, Moyer, Bryson, Robbins, Goh, Vapnyarsky, Speyer, Jacobson,

Bell, McDanell, Powers, Gabasov, Kirillova, Krener, Agrachiov, Gamkrelidze, Mi-

lyutin, Dmitruk, Knobloch, Zelikin, Gurman, Dykhta, Lamnabhi-Lagarrigue, Ste-

fani, Sarychev, and others, see [4, 12], [17] { [39], and references therein. These more

�ne conditions require a more �ne speci�cation of examined extremals. There are

two essentially di�erent classes of extremals: singular and nonsingular extremals.

The �rst one of them includes, as the most pronounced case, the class of totally

singular extremals.

De�nition 2.1. An extremal ŵ is called totally singular, if for any � 2 �(ŵ);

and for any t the Pontryagin function H[�](x̂(t); u; t) does not depend on u 2 U;
i.e. takes the same value H[�](x̂(t); û(t); t) for all u 2 U:
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Since H is linear in u; and U has nonempty interior, this means simply, that for

all t

Hu[�](x̂; û; t) =  (t)F (x̂(t); t) = 0; (11)

or, equivalently,

( (t); fi(x̂(t); t)) = 0 8 i = 1; :::k:

Remark 2.1. Perhaps, it would be more proper to say in this case, that the

constraint u 2 U (or the set U ) is totally singular for the extremal ŵ (rather than

the extremal ŵ itself is totally singular), because U does not actually enter the MP

at all.

Remark 2.2. Note that if U is totally singular, then any other U 0
; containing U;

is totally singular as well, and the set �(ŵ) is one and the same for all such sets U 0
;

and coincides with the set �(ŵ) for U = R
k
; i.e. for Problem A with unconstrained

control. However, if one takes U 0 containing û(t); but not containing U; it may

happen to exist � 2 �(ŵ; U 0); for which (11) fails.

If there exists at least one � 2 �; which does not satisfy (11), then ŵ is not

totally singular. The most distinct case is when there exists � 2 �; for which 8t
H[�](x̂(t); u; t) attains its maximumover U only at the single point û(t): In this case

we call ŵ strictly nonsingular. In the intermediate case, when ŵ is neither totally

singular, nor strictly nonsingular, it is of a mixed type. This case practically has

not been studied in the framework of higher order conditions of a local minimum.

(Only conditions at junction times of singular and nonsingular subarcs have been

analyzed until now, see e.g. [40].) The main e�orts have been spent to investigate

the two principal cases of totally singular and strictly nonsingular extremals. The

higher order conditions for these two cases turned out to be essentially di�erent. In

this paper we consider only the totally singular case. Note that in the

classical calculus of variations (CCV) this case had not been studied, because all

considerations in CCV were made under the assumption of strong Legendre condi-

tion: �Huu[�] � const > 0; whereas for totally singular extremals this coe�cient

is identically zero.

Now let ŵ be a totally singular extremal. We assume that the control û(t) is

continuous. In view of equations (11), this is rather a mild requirement, because

in a generic case it is possible, by di�erentiating these equations two times in t; to

express û(t) in terms of  (t) and x̂(t) (see e.g. [17, 19, 20]), whence û(t) is in fact

Lipschitzian.

Thus, we have taken two assumptions about the examined extremal:
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Assumption 1. ŵ = (x̂; û) is a totally singular extremal.

Assumption 2. The control û(t) is continuous.

Now we impose an assumption on the character of contact of the control û(t)

with the boundary @U of the admissible control set U:

Assumption 3. U is a closed polyhedral set (may be unbounded), and there

exists a face U0 of U; such that 8t û(t) 2 reintU0: (By reint we denote the

relative interior of the convex set.)

In particular case, U0 = U is allowed, which means that 8t û(t) 2 int U:

If U0 is a proper face of U; then û(t) 2 @ U; and we call it the simplest case of

boundary control.

Assumption 3 can be weakened to the following one.

Assumption 3'. U = M \D; where M satis�es Assumption 3, and D is an

arbitrary convex set, such that 8t û(t) 2 intD:

3 Quadratic order of estimation

As was said already, having got �rst order conditions for a local minimum, it is

natural to move to study "second order" conditions. But here we have to de�ne

preciser, what will be meant by "second order" conditions. In �nite-dimensional

problems it is quite clear: they are conditions of the order j�xj2; i.e. when all

considerations are made modulo o(j�xj2): These conditions possess the following

important properties: a) both necessary and su�cient conditions withstand pertur-

bations of all data functions in the problem within o(j�xj2);
b) the su�cient condition consists of a lower bound of second variations by j�xj2;
c) if a point satis�es the necessary condition, one can make an arbitrary small per-

turbation of the data functions in the C2�norm, after which this point satis�es the

su�cient condition.

However, in in�nite-dimensional problems, such as CCV and optimal control

problems, the situation is not so simple, and it is not clear a'priori, what is the

"second order". If one undertake the straightforward generalization of the �nite-

dimensional ideology, i.e. perform all considerations w.r.t. 0(�w) = jj�wjj2; �w =

(�x; �u); then unfortunately one would never obtain the ful�llment of su�cient

conditions (apart from the case of Hilbert space, which is not characteristic neither

for CCV, nor for optimal control): it is well known, that a continuous quadratic

form can be bounded from below by the square of the norm only if the space is

isomorphic to a Hilbert space. The functional 0 can be said to be "too rough"

to estimate second variations in these classes of problems. (Note by the way, that
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in CCV the term "second order conditions" was never used. In those times the

authors said "conditions, based on the second variation", see e.g. [1]. Obviously,

they understood that the term "second order conditions" is not a proper one for

problems in functional spaces.)

Thus, the question arises: what a functional should be taken instead of 0(�w);

in such a way that, roughly speaking, it would preserve the abovementioned prop-

erties of 0 ? The answer depends on the class of problems being considered, and

may also depend on the type of examined trajectory. It was discovered, due to

a series of deep works by A.A.Milyutin and his scienti�c school [5] { [9], [31] {

[38], that for any properly de�ned class of extremal problems there should exist

an estimating functional (�w); positive outside of zero (which we call an order of

estimation, or simply an order), characteristic to this class. (See precise de�nitions

and details in [5].) For general optimal control problems, nonlinear in the control

(e.g. for CCV), in case when û(t) is continuous, such an order is:

clas(�w) = j�x(0)j+
Z
j�u(t)j2dt

(here and throughout the paper all integrals without limits are taken over the

whole interval [0; T ]): The corresponding necessary and su�cient conditions (in

particular, those in CCV) possess the above properties a) { c) [5]. However, it does

not suit to our Problem A: from the very outset one can say, that, since the control

comes just linearly in the problem, the second variations in this problem will never

be bounded from below by this clas(�w); because they never contain the term

with �u
2
:

It turns out that the proper quadratic functional of estimation for Problem A

is:

(�w) = j �x(0) j2 + j �y(T ) j2 +
Z
j �y(t) j2 dt; (12)

where

� _y = �u; �y(0) = 0:

Note that the control variation �u does not come as such in the quadratic order (12);

it comes only through the variation of a new state variable y; where _y = u; y(0) = 0:

(This relation between y and u will be preserved throughout the paper). Here we

give conditions of this order .
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4 The second and third variations, and the crit-

ical cone

For any � 2 � consider the corresponding Lagrange function

�[�](w) = l[�](p) +

Z
(( ; _x) �H[�](x; u; t)) dt

(recall that l[�] and H[�] were de�ned in the beginning of Sec.2), and consider also

the half of its second variation at ŵ - the quadratic functional


[�]( �w) =
1

2
(l00[�]�p; �p)�

Z �
(
1

2
Hxx[�] �x; �x) + (�x;Hxu[�] �u)

�
dt: (13)

De�ne the matrices A(t) = f
0
0(x̂(t); t) + F

0(x̂(t); t)û; B(t) = F (x̂(t); t); and the

tensor R(t) = F
0(x̂(t); t) (by f 0i we denote the derivative of fi w.r.t. x) in such

a way that for x = x̂+ �x and u = û+ �u equation (1) takes the form:

� _x = A(t)�x+ B(t)�u + (R(t)�x; �u) + higher order terms: (14)

Denote by K the so-called critical cone for the problem (1){(4) with the free control.

It consists of all variations �w = (�x; �u) in W; such that

'
0(0)�p � 0; K

0(0)�p = 0; (15)

and

_�x = A(t)�x+ B(t)�u: (16)

The cone of critical variations for the "full" Problem A is K \N ; where N =

f �wj �u(t) 2 N a:e:g; and N = con(U�û(t)) = con(M�û(t)) is the local (pointwise)
tangent cone for the polyhedron M at the point û(t): (By conM we denote the

conical hull
S f�M j� > 0g of the set M:) Due to Assumption 3 (or 3') N does

not depend on t:

We also introduce the cubic functional

�[�]( �w) =

Z �
�(1

2
Huxx[�]�x; �x; �u) + (Hxu[�]�y; (R(t)�x; �u))

�
dt: (17)

It is one sixth of the third variation of Lagrange function at ŵ (in case when

all fi(x; t) are C
3�smooth in x ) on equation (1) to within o() on Pontryagin

sequences, see [32, 33] for details.

It is convenient to consider functionals (13) and (17) in slightly transformed

variables. Namely, there is a convenient change of variables - the so-called Goh

transformation [18, 19]: (�x; �u) 7�! (��; �y; �u); where �� = �x� B�y;

_�y = �u; �y(0) = 0; (18)
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and hence
_�� = A(t)�� + B1(t)�y; B1 = AB � _B: (19)

This transformation is convenient because, instead of the state variable �x; related

to �u by a general linear system (16), there are now two state variables ��; �y; such

that �u does not come into equation (19) for ��; and comes, in the simplest way, only

into equation (18) for �y:

In these new variables, the second variation (13) takes the form:


[�](��; �y; �u) = g[�](��0; ��T ; �yT )+ (20)

+

Z
((D[�](t)��; ��) + (P [�](t)��; �y) + (Q[�](t)�y; �y) + (V [�](t)�y; �u))dt;

where g[�] is a terminal quadratic form, Q[�](t) is a symmetric and V [�](t) is a

skew-symmetric Lipschitz matrices. The term (G[�]��; �u) has been taken by parts

in view of (19) and (18).

Putting in (17) �x = �� + B�y; reduce �[�] in the new variables to the form:

�[�] = �[�] + �[�]; where

�[�](��; �y; �u) =

Z
((T1[�](t)��; ��; �u) + (T2[�](t)��; �y; �u))dt;

�[�](��; �y; �u) =

Z
(E [�](t)�y; �y; �u))dt; (21)

the tensor E [�] is obtained from (17) by substituting B�y instead of �x: It can be

easily shown (see e.g. [33]) that on any Pontryagin sequence we have �[�] = o();

so the only essential term in �[�] is �[�].

The cone K in the new variables is given by equations (18), (19) and terminal

relations (15), in which one should put �p = (�x0 = ��0; �xT = ��T + B1(T )�yT ):

At last, introduce some notations concerning the local cone N: Let H2 be the

maximal subspace in N; and H1 be its complement, i.e. R
k = H1 � H2: Then

N1 = N \ H1 is a pointed cone in the subspace H1, and N = N1 � H2: If one

consider H1;H2 to be coordinate subspaces, then any u 2 N can be uniquely

represented in the form u = (u1; u2); where u1 2 N1; u2 2 H2:

Now we are ready to formulate conditions of the order  for the presence of

weak and �- minima at ŵ:

5 Conditions for a weak minimum

We begin with a general description of the quadratic order conditions. For both

weak and Pontryaginminimumthese conditions are of the same form. To be precise,
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for any a 2 R we de�ne a subset Ma � �; nonincreasing while a increases, and

de�ne the corresponding functional


[Ma]( �w) = sup
�2Ma


[�]( �w) (22)

(the sup over ;; as usually, being equal to +1), and then conditions of minimality

are as follows:

necessary condition:


[M0]( �w) � 0 8 �w 2 K \N ;

su�cient condition: 9 a > 0; such that


[Ma]( �w) � a( �w) 8 �w 2 K \N :

The di�erence between conditions for a weak minimumand conditions for a �-min-

imum is only in the de�nition of the set Ma: This set consists of all � 2 �; for which

the Lagrange function satis�es some special pointwise conditions. (Any pointwise

conditions we call conditions of Legendre type). For a ��minimum these pointwise

conditions are more restrictive, hence the set Ma is smaller, and the corresponding

necessary and su�cient conditions are stronger.

Let us now formulate these pointwise conditions. We begin with a weak min-

imum. Here one can take as Ma the entire �; but it is possible to choose a more

narrow set, thus giving more strong necessary conditions, and more simple su�cient

ones.

For any a 2 R denote by Ga(�) the set of all � 2 �; such that the corresponding

second variation 
[�] satis�es the following three conditions: 8t 2 [0; T ];

8 �h 2 H1; and 8 �u; �v 2 H2

i) (V [�](t)�u; �h) = 0;

ii) (V [�](t)�u; �v) = 0; (23)

iii) (Q[�](t)�u; �u) � aj�uj2:

We introduce also the set G+(�) =
S
a>0Ga(�):

Remark 5.1. For the case when � = f�g; and û(t) 2 int U (i.e. H2 = R
k);

conditions (ii) and (iii) with a = 0 were obtained by B.S.Goh [18] as necessary

conditions for a weak minimum. Note that if (ii) holds, the quadratic form (20)

does not contain the control u; and then, taking into account (19), the variable

y can be regarded as a new control, whence condition (iii) is just the classical
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Legendre condition w.r.t. this new control y: Condition (i) is due to the author

[38].

Before the formulation of the conditions for a weak minimum, let us recall the

following

De�nition 5.1. We say that the equality constraints (1) and (4) satisfy

Lyusternik condition at ŵ , or that they are mutually nondegenerate at ŵ; if the

operator

g : w = (x; u) 7�! ( _x � f0(x; t)� F (x; t)u; K(x0; xT ));

mapping W to Z = L
n
1 [0; T ]�RdimK

; has a surjective derivative at ŵ;

i.e. g
0(ŵ)W = Z:

Theorem 5.1. i) Let ŵ be a weak minimum point in Problem A. If U0 6= U; i.e.

û(t) 2 @ U; suppose also that the equality constraints (1) and (4) satisfy Lyusternik

condition at ŵ: Then G0(�) is nonempty, and


[G0(�)]( �w) � 0 8 �w 2 K \N : (24)

ii) Let G0(�) be nonempty, and for some a > 0


[G0(�)]( �w) � a( �w) 8 �w 2 K \N : (25)

Then ŵ is a strict weak minimum point in Problem A.

iii) From (25) it follows, that Ga(�) is nonempty, and


[Ga(�)]( �w) � a( �w) 8 �w 2 K \N : (26)

The proof is based on a general theory of higher order conditions for a local

minimum in extremum problems with constraints [5]. For the case U0 = U; i.e.

û 2 intU; it is given in [4], [31], for the case û 2 @U it is due to A.A.Milyutin,

see [37]. Note that the nondegeneracy of the equality constraints is required only

in the necessary conditions, and only in the case of boundary control.

De�nition 5.2. We say that ŵ is a weak -minimum point in Problem A, if

condition (25) or (26) is ful�lled for some a > 0:

We also give two equivalent formulations of these conditions. Recall that U

satis�es Assumption 30. Let the polyhedron M � R
k be given by the inequalities:

(as; u) + bs � 0; s = 1; :::; ŝ: (27)

Denote by S0 = S0(û) the set of all active indices s for û(t); i.e. such s; that the

inequality turns into equality. Again due to Assumption 30 it does not depend
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on t: Note by the way, that the cone N = con(U � û) is given by the inequalities

(as; �u) � 0; s 2 S0:
Now let us introduce the so-called violation function:

�(w) =
X
i2I

'
+
i (p) + jK(p)j+

+

Z
j _x� f(x; t) � F (x; t)ujdt+

X
s2S0

ess sup [(as; u(t)) + bs]
+
:

(We use the conventional notation z
+ = maxf0; zg:)

Theorem 5.2. i) Conditions (25) and(26) are equivalent to the following

one: there exists a neighborhood of ŵ in W; in which the violation function has the

lower bound:

�(w) � a
0
(w � ŵ); a

0
> 0: (28)

ii) Suppose that equality constraints (1) and (4) satisfy Lyusternik condition at

ŵ: Then conditions (25) and (26) are equivalent to the following one: 9 a0 > 0;

such that inequality (28) holds for any w from a neighborhood of ŵ in W; satisfying

equations (1) and (4) with u 2 U: (Note that for such w the � reduces to the �rst

term only).

Condition (i) is proved in the general theory [5], the proof of (ii) is given in

Appendix.

Let us dwell for a moment on condition (28). It obviously implies that ŵ is a

strict weak minimum point, thus it is a su�cient condition for a weak minimum.

The equivalence of (25) and (26) to (28) has, at �rst look, rather an abstract

character. However, it turned out to be quite an e�ective tool of investigation.

(It will be essentially used in a forthcoming paper, devoted to application of the

general conditions to abnormal sub-Riemannian geodesics). It worth noting also,

that condition (28) has a "nonvariational" character: it does not include neither

critical variations, nor Lagrange multipliers; it includes just the functions from the

statement of Problem A as they are, not having been undergone any di�erentiations

or approximations.

Checking conditions (24) and (25), i.e. checking the functional
[G0(�)]( �w) (the

maximumof a family of quadratic forms) for the nonnegative or positive de�niteness

on K \N ; is in itself rather a nontrivial problem. It is known, that for a single

quadratic form the question of its nonnegative or positive de�niteness on a subspace

can be solved by means of the classical Jacobi theory, which gives an answer in terms

of the absence of conjugate (or focal) points. For a quadratic form on a cone, the

more so for a maximum of quadratic forms, this question is much more di�cult,
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because here the Euler-Jacobi equation is no longer linear (the di�erence of two

solutions is not a solution). However, for this nonclassical situation there is an

analogue of Jacobi theory [14], [15], [16], which establishes the equivalence of the

positive de�niteness of 
 to the absence of conjugate (focal) points in [0,T]. But

for the nonnegativity of 
; generally, only the one-way implication is true: 
 � 0

implies that there are no conjugate points in (0,T). In the case of a single quadratic

form, being considered on a polyhedral cone (hence the local cone must be absent:

N = R
k, only terminal inequalities are allowed), the reverse implication is true

as well [16], and so the Jacobi theory for this case is in a sense complete. In the

general case there are counterexamples to this reverse implication [14], [15].

6 Su�cient conditions for small time intervals

There is an important case, when the above question of checking the quadratic

functional for the positive de�niteness has a simple solution. It is the case when the

length of time interval is small enough. Recall that in CCV the positive de�niteness

of a quadratic functional on small time intervals is guaranteed by the strengthened

Legendre condition, provided that at least one of the endpoints in the initial problem

is �xed, i.e. one of the endpoint variations equals to zero (�x(0) = 0 or �x(T ) = 0 ).

A similar fact holds true for a quadratic functional of the form (20) on an arbitrary

cone K; contained in the subspace given by equations (19), (18).

6.1 A general theorem

For any interval � = [t0; t1] � [0; T ] let us consider a quadratic functional of the

type


(��; �y; �u) = g(��0; ��1; �y1)+ (29)

+

Z
�

((D(t)��; ��) + (P (t)��; �y) + (Q(t)�y; �y) + (V (t)�y; �u)) dt;

where g is a terminal quadratic form, and matrices D;P;Q; V are de�ned and

uniformly bounded on [0; T ]: We also consider the subspace L�; consisting of all

�w = (��; �y; �u) satisfying (19) and (18) a.e. on �; and the cone N = f �w j �u(t) 2
N a:e: on �g:

Theorem 6.1. Suppose that 9 C; �0 > 0 such that 8�; j�j � �0; the following

estimates hold on L�:

jj��jj1 � Cjj�yjj1; j�y(t1)j � Cjj�yjj1; (30)

and let N = N1�H2; where N1 is a pointed cone in a subspace H1; and H1�H2 =

R
k
: Suppose further that quadratic form (29) satis�es on [0,T] the above three
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conditions (23) with a > 0: Then there exists � > 0; depending on the numbers

C; �0; a; and on the coe�cients of 
; such that if � � [0; T ] and j�j � �; then


( �w) � a

2
( �w) 8 �w 2 L�\N�:

This theorem in fact claims, that under conditions (23) with a > 0; for all small

enough �; the main term in 
 is
R
(Q22�y2; �y2)dt:

Proof. (We omit the bars over the variables.) Take u = (u1; u2); u1 2 H1; u2 2
H2 on �; and y = (y1; y2); _y = u; y(t0) = 0: Like in the classical situation,

we will evaluate all the terms in 
; taking into account that � is small. Recall the

known estimate for the functions on an interval � with j�j � � :

jjyjj1 �
p
� � jjyjj2: (31)

Denote 1(y) =
R
�
y
2
1dt; 2(y) =

R
�
y
2
2dt; and let us compare 2(y) with our

"full"

(w) = j �(t0) j2 + j y(t1) j2 +
Z
�

(y21 + y
2
2)dt;

when w = (�; y; u) 2 L�: Since N1 is a pointed cone, and _y = u 2 N1; y(t0) = 0;

then y1 is monotone nondecreasing w.r.t. N1; hence for some constant b

jjy1jj1 � bjy1(t1)j ; (32)

and due to (30), (31)

jjy1jj1 � bCjjyjj1 � bC

p
�jjyjj2;

therefore 1(y) � �jjy1jj21 � b
2
C
2
�
2jjyjj22 = (b2C2

�
2)(1 + 2); which yields that

for � small enough 1(y) � 2(b2C2
�
2)2(y):

From here, (30) and (31) it follows that (y) is of the same order as 2(y);

moreover, for � > 0 small enough

2(y) � (y) � 3

2
2(y): (33)

With (30) and (31) this gives

jj�jj1 � const �
p
�

p
2(y); jy(t1)j � const �

p
�

p
2(y); (34)

whence the outside term in 
 is � const�� � 2(y):
From (34) it follows also that the integrand terms in 
; containing �; have the

same estimate. Due to (32) and (34) we get jjy1jj1 � const�
p
�

p
2(y); whence the

integrand terms, containing (y1; y1) and (y1; y2); are � const�� � 2(y) too. Recall,

that due to (23) we have
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Z
�

(Q22y2; y2) dt � a � 2(y): (35)

Thus, it remains to evaluate only the integrand term (V11y1; u1): Since u1 2 N1;

and N1 is a pointed cone, there exists a vector l 2 R
k1 ; such that ju1j � const

(l; u1) 8u1 2 N1 (actually, here one may take any l 2 int N�

1 ): ThenZ
�

j(V11y1; u1)j dt �
Z
�

jV11j � jy1j � ju1j dt � const � jjV jj1 � jjy1jj1 �
Z
�

(l; u1) dt �

� const � jjy1jj1 � (l; y1(t1)) � const � jy1(t1)j2

(the last inequality is due to (32)), and taking into account (34), we continue �
const�� � 2(y):

Thus, 
 =
R
(Q22y2; y2)dt+ �(�; y; u); where j�j � const�� � 2(y):

If � is small enough, then j�j � 1
4
a2(y); and in view of (33) and (35):


 � 3

4
a 2(y) � a

3

4

2

3
(y) � a

2
(y); q.e.d.

6.2 A special case

Consider here an important special case, in which the above assumptions about 


and estimates (30) do hold. Let system (1) be of the form:

_x = zf0(x) +

kX
i=1

uifi(x); _z = 0; (36)

where x 2 R
n and z 2 R

1 are the state variables, Dx;z;t = Dx � R
1 � [0; T ];

the vectors fi(x); i = 0; 1; :::; k are C2-smooth and linearly independent at any

point x 2 Dx: Take a trajectory ŵ = (x̂(t); ẑ = 1; û = 0); t 2 [0; T ]; and for

any � = [t0; t1] � [0; T ] let us consider the Problem A�; associated with this

trajectory, with the terminal constraints x(t0) = x̂(t0); x(t1) = x̂(t1); with z(t0)

and z(t1) being free, the control u being free too, and with the cost functional

J = z(t0) �! min : Begin with a simple

Proposition 6.1. If ŵ satis�es MP in Problem A[0;T ]; then it satis�es MP in

Problem A� for any � � [0; T ]:

Proof. The MP for Problem A� means that there exists a nonzero n-vector

function  x(t) (the costate variable, corresponding to x), such that for H =

 x(zf0(x) +
P
uifi(x)) the following relations hold on � along ŵ(t):

_ x = �Hx; Hu = 0; H = const � 0:
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(The costate variable  z; corresponding to z; is a scalar linear function with

 z(t1) = 0 and _ z = �H; so it is determined by  x:) If such  x exists for

[0; T ]; it obviously �ts for any � � [0; T ]:

Since there are no inequality constraints in our problem, the critical cone here

is, in fact, the subspace L�, consisting of all �w = (�x; �z; �u); satisfying the linear

equations:

_�x = �zf0(x̂) + f
0

0(x̂)�x+
X

�uifi(x̂); (37)

_�z = 0; �x(t0) = �x(t1) = 0:

Passing to the Goh variables (�z; ��; �y; �u); where

�x = �� +
X

�yifi(x̂);

_�yi = �ui; �yi(t0) = 0; i = 1; :::; k; (38)

we get instead of (37):

�� = �zf0 + f
0

0
�� +
X

�yj [f0; fj]; ��(t0) = 0 (39)

(here [f; g] = f
0
g � g

0
f are Lie brackets), and the terminal equality �x(t1) = 0

becomes:

��(t1) +
X

�yi(t1)fi(x̂(t1)) = 0; (40)

so that now we may consider L� as the set of all (�z; ��; �y; �u); satisfying (39), (40)

and (38). Since the vectors fi(x̂(t)) are linearly independent, and continuous in t;

there exists a number C0 (independent of t1), such that (40) implies

j�y(t1)j � C0

����(t1)�� : (41)

Besides, (39) obviously implies that for some C1 (independent of �)

jj��jj1 � C1

�
j�zj � j�j+

Z
�

j�yj dt
�
: (42)

Let us show that 9C2; such that

j�zj � C2

1

j�j jj�yjj1 on L�: (43)

In order to do this, consider the space W� = R � L
k
1(�) � R

k with elements

�w = (�z; �y; �h); and consider the subspace M� � W�; de�ned by the equality

��(t1) +

kX
i=1

�hif̂i(t1) = 0; (44)
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where �� is the solution to (39) for �z; �y; and for brevity we write f̂i(t) = fi(x̂(t)):

There is a natural injection L� �!M�; (�z; ��; �y; �u) 7�! (�z; �y; �h) (we just ignore

relations (38) and put �h = �y(t1)), so that M� can be considered as an extension

of L�: We will show that estimate (43) holds onM�:

First we establish the following abstract fact.

Lemma 6.1. Let Y and H be Banach spaces, W = R � Y �H; and M be a

subspace in W: Suppose that 9 � > 0 such that for any y 2 Y; jjyjj < �; for any

h 2 H the point (1; y; h) =2M: Then 8w = (z; y; h) 2M jzj � 1
�
jjyjj:

Proof. Take any w = (z; y; h) 2 M: If z = 0; the desired estimate is ful�lled

trivially. If z 6= 0; then w
0 = (1; y=z; h=z) 2M; and hence jjy=zjj � � (otherwise

w
0
=2 M), which gives �jzj � jjyjj; q.e.d.

Let us return to our space W�: Here Y = Y� = L
k
1(�); H = R

k
; and M is

the above M�: In the space Y� we will consider the norm jjyjj = 1
j�j
jjyjj1; and

we have to check the premise of Lemma 6.1.

First, we show that 8�h the vector �w = (�z = 1; �y = 0; �h) =2 M�: To prove

this, we have only to check that (44) does not hold. Note that for �z = 1; �y = 0

equation (39) reads: _�� = f0 + f
0
0
��; ��(t0) = 0; and it has the explicit solution

��(t) = (t � t0)f0(x̂(t)) (this was noticed by A.A.Milyutin), hence its terminal

value on � is ��(t1) = (t1 � t0)f0(x̂(t1)): Since f̂i(t); i = 0; 1; :::; k are linearly

independent 8t 2 [0; T ]; then for any �h 2 Rk

j�j � f̂0(t1) +
kX
i=1

�hif̂i(t1) 6= 0; (45)

and so �w = (1; 0;�h) =2 M�:

Now let us check this condition for small nonzero �y-s.

Lemma 6.2. 9 � > 0 such that 8�; for any �y 2 Y�; jj�yjj � �; for any
�h 2 Rk

; the point �w = (1; �y; �h) =2M�:

Proof. Denote L(t) = Lin ff̂i(t); i = 1; :::; kg: (We write Lin for the linear

hull of the set.) Equality (44) means that ��(t1) 2 L(t1); and we have to show

that this is not so. Since the vectors f̂i(t); i = 0; 1; :::; k are linearly independent

8t 2 [0; T ] and continuous, 9 " > 0 such that

8t 2 [0; T ] B"(f̂0(t)) \ L(t) = ;: (46)

Given this "; 9 � > 0; such that 8�; if jj�yjj1 � j�j � �; then for ��(t1); correspond-

ing to �z = 1 and this �y; we have�����(t1) � j�j � f̂0(t1)��� � const �
Z
�

j�yj d� � const � j�j � � � j�j � ";
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i.e. ��(t1) 2 Bj�j"(j�j � f̂0(t1)) = j�j � B"(f̂0(t1)): In view of (46), for any � and

any �y 2 Y�; such that jj�yjj = 1
j�j
jj�yjj1 � �; we have ��(t1) =2 L(t1); and hence

8�h 2 Rk the point �w = (1; �y; �h) =2M�: Lemma 6.2 is proved.

Thus, the premise of Lemma 6.1 is ful�lled with a � > 0 independent of �.

By this Lemma we get the desired estimate

j�zj � C2

1

j�j jj�yjj1 on M� � L� with C2 = 1=�:

Finally, (42) and (43) give jj��jj1 � const jj�yjj1; and in view of (41) we get

j�y(t1)j � const jj�yjj1 on L�; thus estimates (30) hold, and so Theorem 6.1 applies

to the considered special case.

Remark 6.1. Estimates (30) are ful�lled also for the critical subspace, corre-

sponding to the system

_x = z

 
f0(x) +

kX
i=1

uifi(x)

!
; _z = 0; (47)

at the same reference trajectory ŵ = (x̂(t); ẑ = 1; û = 0); because its linearization

has the same form (37) (the di�erence between systems (36) and (47) is only in

their 
-s).

7 Conditions for a �-minimum

Let us now pass to conditions for a ��minimum. As was said already, they di�er

from the conditions for a weak minimumby an additional pointwise condition. (Re-

call that we regard any pointwise condition as a condition of Legendre type.) This

new condition of Legendre type involves the third variation of Lagrange function,

or, more precisely, the cubic functional (17), and also the admissible control set

U: Recall that we denote by U0 the minimal face of U; containing û(t); and that

due to Assumption 30 this face is the same for all t: For any � 2 � and any �xed

t� 2 [0; T ] de�ne the functional

L[�; t�](�y) =

Z 1

0

((Q[�](t�)�y; �y) + (E [�](t�)�y; �y; �u))d�; (48)

which is to be considered for all absolutely continuous functions �y(� ) on [0; 1]; such

that �y(0) = �y(1) = 0 (we will call such functions cycles). Here Q[�] is the matrix

from the second variation (20) of Lagrange function, and E [�] is the tensor from
the third variation (21), both frozen at the point t�.
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De�nition 7.1. We say that � satis�es the ��Legendre condition with a

parameter a 2 R; if for every t�; and every cycle �y(� ); such that

_�y(� ) = �u(� ) 2 U � û(t�); (49)

the following inequality holds:

L[�; t�](�y) � a

Z 1

0

(�y; �y) d�: (50)

(Relation (49) means that the control set is also frozen at the point t�.)

Denote by Ea(�) the set of all � 2 Ga(�) satisfying this condition.

Theorem 7.1. i) Let ŵ be a �-minimum point in Problem A. If U0 6= U; i.e.

û(t) 2 @U; suppose also that the equality constraints (1) and (4) satisfy Lyusternik

condition at ŵ: Then E0(�) is nonempty, and


[E0(�)]( �w) � 0 8 �w 2 K \N : (51)

ii) Let for some a > 0 the set Ea(�) be nonempty, and


[Ea(�)]( �w) � a( �w) 8 �w 2 K \N : (52)

Then ŵ is a strict �-minimum point in Problem A.

The proof again is based on the general theory [5]. For the case U0 = U; i.e.

û 2 int U; it is given in [33], [34] (see also [39]); for the case û 2 @U it is given

in [37].

Consider inequality (52). Theorem 6.1 readily implies the following property

for small intervals.

Lemma 7.1. Consider 
[�] and �[�] on any interval � � [0; T ]; and suppose

that for all small enough � estimates (30) hold. If for some a > 0 the set Ea(�)

is nonempty, then for all small enough � inequality (52) is ful�lled with a=2:

Proof. If �0 2 Ea(�); then by de�nition �0 2 Ga(�); i.e. (23) is

ful�lled with this a > 0: By Theorem 6.1 for all small enough � we have


[�0]( �w) � a
2
( �w) 8 �w 2 K�\N�; and since Ea=2(�) � Ea(�) 3 �0;

we get 
[Ea=2(�)]( �w) � 
[�0]( �w) � a
2
( �w) 8 �w 2 K� \ N�; q.e.d.

For large intervals, as was said already, in order to check (52) one should use a

theory of Jacobi type (see e.g. [15, 16]).

De�nition 7.2. We say that ŵ is a � � -minimum point in Problem A, if

condition (52) is ful�lled for some a > 0:
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As before, we give two equivalent formulations of this condition. Denote by

�(U; ŵ) the set of all Pontryagin sequences, converging to ŵ; such that

ess sup dist (u(t); U )! 0:

Theorem 7.2. i) Condition (52) with a > 0 is equivalent to the following

one: there exists a0 > 0; such that for any sequence fwmg 2 �(U; ŵ); for all large

enough m; the violation function has the lower bound:

�(wm) � a
0
(wm � ŵ) : (53)

ii) Suppose that equality constraints (1) and (4) satisfy Lyusternik condition

at ŵ: Then condition (52) with a > 0 is equivalent to the following one: there

exists a0 > 0; such that if fwmg is a Pontryagin sequence, converging to ŵ; and

satisfying equations (1) and (4) with um 2 U; then inequality (53) holds for all

large enough m: (Note that for such wm the � reduces to the �rst term only.)

Assertion (i) is proved in the general theory [5], the proof of (ii) is given in

Appendix. Before going further, let us make some remarks about the ��Legendre
condition (50).

Remark 7.1. From (49) and �y(0) = �y(1) = 0 it follows obviously that actually

�u(� ) 2 U0 � û(t�) � H2; and �u1 = �y1 = 0; hence, for every cycle �y only the second

component �y2 may be nonzero. Therefore, we can put in (49) �u(� ) 2 U0 � û(t�);

and so condition (50) in fact concerns the minimal face U0 of U; containing û(t�)

(and hence containing all û(t) ).

Remark 7.2. Condition (50) is invariant w.r.t. the interval of integration:

taking u
0(� ) = �u(s� ); y0(� ) = �y(s� )=s; by an easy calculation we get the same

inequality (50) for interval [0; 1=s]; so we may choose to consider [0; 1]:

Remark 7.3. Condition (50), though being seemingly of an integral form,

has a pointwise character, i.e. it can be veri�ed at each point t� separately.

To verify condition (50), one have in fact to solve an auxiliary extremal problem:

to �nd the maximal a; for which this inequality holds true for any cycle satisfying

(49). This is rather an unusual and di�cult problem. At present we can solve this

problem completely for three cases of the control set U : a) the whole space, b) an

arbitrary stripe of codimension 1, c) an arbitrary ellipse in the plane (see [12, 38]).

For a general case some theoretical results are obtained in [13].

Here, in view of our further purposes, we consider only the most simple case

(a), in which u is unconstrained. De�ne the di�erential 1-form

![�](t�) = (E [�](t�)y; y; dy) =
X
ijs

Eijs[�](t�)yiyjdys: (54)
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Theorem 7.3 [32, 33]. Condition (50) holds for a given a i� Q[�](t�) � a

(Goh condition for a weak minimum), and ![�](t�) is closed, i.e.

d![�](t�) =
X
ijs

Eijs[�](t�)(yidyj + y
j
dy

i) ^ dys = 0; (55)

the di�erential is taken w.r.t. y; and �; t� are just parameters.

Thus, in this case condition (50) decomposes onto conditions concerning the

quadratic and cubic parts separately, the last being an additional optimality con-

dition (55) of equality type.

Similar conditions take place in the case when U = U1 �H2; R
n = H1 �H2;

and U1 is a polyhedron in H1; having û1(t) � û1 as a vertex. (Here the above face

U0 = H2: ) In view of Remark 7.1, condition (50) here concerns only the cycles

lying in H2; hence (50) means that on the subspace H2 both Q[�](t�) � a and

(55) must hold.

Note also that in this case the following property holds [31, 15].

Theorem 7.4. Suppose that E0(�) is nonempty, and for some a > 0


[E0(�)]( �w) � a( �w) 8 �w 2 K \N :

Then Ea(�) is nonempty (with the same a); and still


[Ea(�)]( �w) � a( �w) 8 �w 2 K \N :

The reverse implication holds trivially due to inclusion Ea � E0: In the general

case, when the face U0 is not a subspace, Theorem 7.4 fails to hold.

Let us now consider another case, when the minimal face U0 is "small", and

establish a relation between conditions Q[�](t�) � a and (50) in this case. As

before, we have R
n = H1 � H2; H2 =Lin (U0 � û(t)); N =con (U � û(t)) =

N1 �H2; N1 = N \H1 :

Lemma 7.2. (i) Let for t� condition (50) holds. Then Q[�](t�) � a on H2:

(ii) Suppose that Q[�](t�) � a on H2: Then 8a0 < a 9� > 0; such that if

U0 is contained in the �-neighbourhood of û(t�); then (50) is ful�lled with a0: The

number � depends only on ja� a0j and jjE [�](t�)jj:

Proof. Assertion (i) follows from the fact that one can take as a cycle a function

�y(� ) passing with a constant velocity along an arbitrary vector v 2 H2 and back

to zero. On such a cycle any point �y is passed forward and back with the same
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velocity, hence the cubic term in (48) obviously vanishes, and the quadratic term

reduces to (Q[�](t�)v; v); which should be � a(v; v):

Assertion (ii) follows from the simple estimate:Z
j(E [�](t�)�y; �y; �u)jd� � jjE [�](t�)jj � jj�ujj1

Z
(�y; �y)d�:

If jj�ujj1 � �; and �jjEjj � ja�a0j; then the cubic term, being added to the quadratic

term, can worsen the constant a not lower than to a0:

Assertion (ii) means, that the smaller in size is the face U0 containing û(t); the

smaller contribution in L[�] gives the cubic term. If Q[�](t�) � a > 0 on H2;

and the face U0 is small enough in size, then (50) is also ful�lled, perhaps with a

smaller, still positive a0: Note that here the size of the entire U does not matter, it

may be arbitrarily large, only the size of the face U0 is important. This observation

will be used in the next section.

8 Su�cient conditions for a strong minimum in

case of a strictly convex set U

Let us now consider the case, when the control set U in Problem A is a strictly

convex compactum with a smooth boundary @U; and û(t) � û 2 @U on [0; T ]:

Since in this case @U = exU; then, supposing also that 8t rankF (x̂(t); t) = k;

by Proposition 1.1 we have that the �-minimum implies here the strong minimum

(the reverse implication always holds trivially), and so any su�cient conditions for

the �-minimum are at the same time su�cient conditions for the strong minimum.

In view of this property, we are interested to obtain su�cient conditions for the

�-minimum in this case.

Remark 8.1. All considerations in this section are in fact valid for a more

general case, when U is a convex compact set (not necessarily strictly convex),

û(t) � û 2 @U; there is a unique outward normal � 2 R
k for U at û; and

Argmax (�; U ) = fûg; i.e. û is a unique maximum point of the linear functional �

on U: For example, if the set U is given by the inequality '(u) � 1; where '

is a smooth strictly convex sublinear functional, these assumptions obviously are

ful�lled for any û 2 @U .

Let us try to apply the abovestated theory to this case. Formally, this case

does not �t in this theory, because U does not satisfy Assumption 30 (it is not a

polyhedron in a vicinity of û). However, this theory applies, if we take the following

approach. Since we are interested in su�cient conditions, then instead of U we
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may consider any polyhedron U 0 containing U; and obtain su�cient conditions for

Problem A with the control set U 0 : obviously, these conditions will be as well

su�cient for Problem A with the set U: What is important is that the choice of

the polyhedron U 0 is in our disposal.

Let us �x any " > 0; and take as U 0 an arbitrary polyhedron containing U; such

that û 2 @U
0
; and the corresponding face U 0

0 (containing û) has diameter � ":

Due to the smoothness of @U; dim U
0
0 = k � 1; û 2 reintU 0

0; and the a�ne hull

A�U 0

0 is a (unique) tangent hyperplane for U at û:

Remark 8.2. There are plenty of ways to construct such a polyhedron. Here

we point out two of them.

1) Take any � > 0; and pick a �nite �-net � � @U containing û as an element.

For each u 2 � take any support hyperplane for U at u; and consider the corre-

sponding closed halfspace P (u) containing U: Then U
0 =

T
u2�P (u) satis�es the

above requirements with some "(�) tending to zero as � ! 0:

2) Let P be an arbitrary polyhedron containing U; such that û 2 @P; let � be

the outward normal to U (and then to P ) at û; and L be the tangent hyperplane

at û: Choose an arbitrary polyhedral norm in R
k
; and for any " > 0 denote by

B"(û) the "-ball around û:

Given an " > 0; denote by K� ; � > 0 the cone generated by B"(û) \ L with

vertex at û+��: Since L\U = fûg; then K� � U for some � > 0: (The existence

of such � > 0 is obvious for any 2-dimensional cutset of U containing �; and then,

by virtue of the arguments of compactness, for the entire U .)

Take, for the certainty, � be the maximal of those �-s, and denote it by �("):

Then the set U 0 = P \K�(") will do. (For small " > 0; its face containing û; is

U
0
0 = B"(û) \ L; which diameter is � ":)

Chosen any method of constructing the polyhedron U
0
; we will consider that

8" > 0 we have a polyhedron U" with the above properties. Note that generallyT
">0U" 6= U (e.g. in the above second method), and in fact we do not need that U"

would be close to U ; we only need that the size of the face U0
" in U" (corresponding

to the normal �) would tend to zero. We do not provide here pictures, since the

reader can easily draw them himself.

Problem A with the control set U" (instead of U ) will be denoted by Problem

A": We want to obtain su�cient conditions for �-minimum in Problem A": But

now, since U" is a polyhedron, we can use the above theory, and formulate su�cient

conditions for ��-minimum in ProblemA": In order to do this, we need to inspect

all objects of this theory for Problem A".

As was noted in Remark 2.2 (and it is very important for us), due to the

singularity of ŵ; the set �(ŵ) (and hence the families 
[�] and �[�] ) do not depend
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on the choice of the control set U"; since the last contains the initial set U: Besides,

for all U" the tangent (at û) cone N is one and the same: N = f�u j (�; u) � 0g;
where � is the outward normal to U at û (which is assumed to be unique), the

maximal subspace in N is H2 = f�u j (�; u) = 0g; its complement H1 = R�; and

N1 = �R+�:

All this implies, that 8a 2 R the set Ga(�) is one and the same for all

Problems A"; " > 0: It consists of all � 2 �; such that quadratic form 
[�]

satis�es conditions:

i) V [�](t) = 0 (56)

(here both conditions (i) and (ii) of (23) are taken into account, as well as the fact

that dim H1 = 1 ), and

ii) Q[�](t) � a on H2: (57)

As to the set Ea(�); involving in its de�nition the face of U" containing û;

here the situation is as follows. Denote this set for Problem A" by Ea(�; U"):

Let us �x an a > 0; and take a � 2 Ga(�): Due to Lemma 7.2, 9 "0 > 0;

such that � 2 Ea=2(�; U") for all " � "0: The number "0 depends only on a and

jjE [�](t)jj1: Since the tensor E [�](t) is linear in �; and the set � is bounded, then

maxfjjE [�]jj1; � 2 �g is a �nite number, hence we can consider that "0 depends

only on a; and does not depend on �:

Thus, 8" � "0(a) we have: if � 2 Ga(�); then � 2 Ea=2(�; U"); i.e.

Ga(�) � Ea=2(�; U"): (58)

The critical cone K for all Problems A" with the free control (i.e. without

taking into account the constraint u 2 U") is one and the same by its de�nition,

because all these problems di�er only in the sets U".

All this obviously implies, that if the inequality


[Ga(�)]( �w) � a( �w) 8 �w 2 K \N (59)

holds, then the inequality


[Ea=2(�; U")]( �w) � a( �w) 8 �w 2 K \N (60)

holds too (and the more so the last one holds, if in its right hand side a is replaced

by a=2). Recall now, that by Theorem 5.1 inequality (59) is a su�cient condition

for the weak -minimum in Problem A"; and by Theorem 7.1 inequality (60) is a

su�cient condition for � � -minimum in Problem A": Thus, we have got the

following chain of implications:
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weak �minimum in Problem A" =) � � �minimum in Problem A" =)
strict ��minimum in Problem A" =)
(due to inclusion U" � U) strict ��minimum in Problem A =)
(due to Proposition 1.1) strict strong minimum in Problem A:

Finally, in order to complete the picture, we add one more step. Consider the

halfspace U� = fu j (�; u) � (�; û)g containing U; bounded by the tangent

hyperplane to U at û: Problem A with U� we denote by A�: Obviously, for this

problem the local cone is still the same as for Problems A" (i.e. N ). Therefore,

Ga(�; U�) = Ga(�) for all a; whence the weak �minimum in Problem A� simply

coincides with the weak �minimum in any Problem A"; " > 0: Note by the way,

that on the level of weak minimum not only �su�cient conditions in all these

problems coincide: in fact, the problems themselves do not di�er one from another,

because in a neighborhood of û (depending on ") the sets U� and U" simply coincide.

These arguments and the above chain of implications yield the following su�-

cient conditions for the strong minimum in Problem A.

Theorem 8.1. Suppose that ŵ satis�es �su�cient conditions for the weak

minimum in Problem A�; i.e. the set G0(�) is nonempty, and for some a > 0


[G0(�)]( �w) � a( �w) 8 �w 2 K \N : (61)

Then ŵ is a strict strong minimum point in the initial Problem A.

Moreover, for some "; C > 0; on the set jjx� x̂jj1 < "; for all w = (x; u); u 2
U; satisfying equation (1), the following inequality holds:

X
i2I

'
+
i (p) + jK(p)j � C(w � ŵ):

Proof. By Theorem 5.1 inequality (61) is equivalent to (26) = (59), and, as was

shown, this implies (60) for some " > 0; which means that ŵ is a �� -minimum

point in Problem A"; and which is a su�cient condition for the strict �-minimum

in Problem A"; and hence for the strict �-minimum in Problem A: In our case

the last is equivalent to the strict strong minimum, so the �rst assertion is proved.

Now let us pass to the second assertion. Due to Theorem 7.2, from (60) it follows

that 9C > 0; such that for any sequence wm = (xm; um); um 2 U; satisfying (1)

and such that

jjxm � x̂jj1 ! 0; jjum � ûjj1 ! 0; (62)

we have

�(wm) =
X
i2I

'
+
i (pm) + jK(pm)j � C � (wm � ŵ): (63)
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Due to Lemma 1.1, the �rst condition in (62) implies (for our U; and û 2 @U ) the
second one, so the last one can be omitted. Then the resulting assertion obviously

implies (in fact is equivalent to) the required second assertion of the theorem.

From here and Theorem 6.1 we obtain the following theorem for small time

intervals. Consider a special case of Problem A as in Sec. 6.2, for system (47) with

the constraint u 2 U; and with the cost J = z(t0) ! min : (This corresponds to

the problem of time-optimality for system (47) with z = 1:)

Theorem 8.2. Suppose that 9 �0 > 0; such that 8�; j�j � �0; the set

G+(�(A�(�))) is nonempty, i.e. there exists a costate function  (t); satisfying on

� the costate equation and conditions (56) and (57) with an a > 0: Then there

exists �1 > 0; such that 8�; j�j � �1 trajectory ŵ� is a strict weak minimum point

in Problem A�(�); and a strict global minimum point in Problem A�:

Note that here we do not require that the set G+(�(A�[0; T ])) should be

nonempty, or even that the Lagrange set �(A�[0; T ]) itself should be nonempty.

In the proof we will need the following three lemmas.

Lemma 8.1. Suppose that 9 �0 > 0; such that 8�0 � [0; T ]; j�0j �
�0; 9 � > 0; such that if � � �0; j�j � �; then some Property P(�) holds.

Then 9 �1 > 0 such that if � � [0; T ] and j�j � �1; then P(�) holds.

The proof follows from simple arguments of compactness.

Lemma 8.2. Suppose for some �0 � [0; T ] the ŵ is a strict strong minimum

point in Problem A�0
: Then 9 �; " > 0; such that if � � �0; j�j � �; a point

w = (z; x; u) is admissible in Problem A�; and jz � 1j < "; then z > 1:

Proof. The strict strong minimum in Problem A�0
means that 9 "0 > 0; such

that if w = (z; x; u) is admissible in ProblemA�0
; and jz�1j < "0; jjx�x̂jj1 < "0

on �0; then z > 1:

Consider the operator L1(�0) � L1(�0) ! C(�0); mapping (z; u) 7! x

according to system (47) with the �xed value x = x̂ at the left end of �0: Since

this operator is continuous at (ẑ = 1; û = 0); and maps it to x̂; 9 "1 > 0; such

that if jjz(t)� 1jj1 < "1; jjujj1 < "1; then jjx� x̂jj1 < "0 on �0: Take this

"1 � "0: We claim that the following Property F holds:

9 "2 > 0; such that if (z(t); x; u) satis�es (47) on �0 with u 2 U; x = x̂ at

@�0; 1� "2 � z(t) � 1; and jjujj1 < "2; then there exists a triple (z0; x0; u0);

admissible in Problem A�0
; such that 1� "0 � z

0 � 1; and jjx0� x̂jj1 < "0:
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Indeed, let us reparametrize the given x; u; putting

q =
1

j�0j

Z
�0

z(t) dt; and d� =
1

q
z(t) dt;

and de�ne z
0 = q; x

0(� ) = x(t(� )); u
0(� ) = u(t(� )): Obviously, the new triple

(z0; x0; u0) still satis�es (47), and since z0 is constant, this triple is admissible in

ProblemA�0
; besides, since z0 is the mean value of z(t); we have 1�"2 � z

0 � 1:

If "2 is small enough, then jz0� 1j < "1 � "0; and jju0jj1 < "1; and hence, due to

the continuity of the above operator, jjx0� x̂jj1 < "0: Property F is proved.

Now, since U is bounded, 9 �2 > 0; such that if j�j < �2; then jjujj1 < "2:

We claim that for these �2 and "2 the assertion of Lemma holds.

Take any � � �0; j�j � �2; and let a point w = (z; x; u) be admissible in

Problem A� with jz � 1j < "2: We have to show that z > 1: Suppose that

z � 1: By the de�nition of �2 we have jjujj1 < "2: Expand x(t) on the entire

�0; putting x = x̂ outside of � (this is possible, because x = x̂ at both ends of

�), and expand u(t); putting u = 0 outside of �; and de�ne z(t) = z on �

and z(t) = 1 outside of �: The triple (z(t); x(t); u(t)) satis�es the conditions of

Property F, and hence there exists a triple (z0; x0; u0); admissible in Problem A�0
;

such that 1 � "0 � z
0 � 1; jjx0 � x̂jj1 < "0 and z

0 � 1: But this contradicts

the strict strong minimum at ŵ in Problem A�0
; and hence z > 1: Lemma 8.2

is proved.

Lemma 8.3. Suppose that for some �0 � [0; T ] the ŵ is a strict strong

minimum point in Problem A�0
: Then 9 � > 0; such that if � � �0; j�j � �; then

ŵ is a strict global minimum point in Problem A�0
:

Proof. By Lemma 8.2 we have the following Property B: 9 �; " > 0; such that

if � � �0; j�j � �; a point w = (z; x; u) is admissible in Problem A�; and

jz � 1j < "; then z > 1: Fix this � > 0; and let us show that we can get

rid of the requirement jz � 1j � "; i.e. that the following Property C holds: if

j�j � �; and the point w = (z; x; u) is admissible in Problem A�; then z > 1:

Indeed, if it is not true, then 9�; j�j � �; and w = (z; x; u); admissible in

Problem A�; such that z � 1: Taking a linear change of time: d� = z � dt;
we get x0(� ) on an interval �0

; with j�0j = z � j�j � �; satisfying equation (47)

with z = 1; which contradicts Property B. Thus, Property C is proved, and it is

just the strict global minimum in Problem A� for any � � [0; T ] with j�j � �;

q.e.d.

Proof of Theorem 8.2. Take any �0 � [0; T ]; j�0j � �0; and a � 2
G+(�(A�(�0))): By de�nition � satis�es conditions (56) and (57) on �0 with
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some a = a(�0) > 0: Due to Theorem 6.1, 9 � > 0 such that if � � �0; and

j�j � �; then


[�]( �w) � a

2
( �w) 8 �w 2 L� \N� ;

i.e. ŵ is a weak -minimum point in Problem A�(�): By Theorem 8.1 ŵ is

a strict strong minimum point in Problem A�: From here by Lemma 8.1 we get

that 9 �1 > 0; such that if � � [0; T ] and j�j � �1; then ŵ is a strict

strong minimum point in Problem A�: For this �1 we have by Lemma 8.3, that

8� � [0; T ]; j�j � �1; 9 � > 0 such that if �0 � � and j�0j � �; then ŵ is a

strict global minimum point in Problem A�0 : Using again Lemma 8.1, we obtain

that 9 �2 > 0; such that if � � [0; T ] and j�j � �2; then ŵ is a strict global

minimum point in Problem A�: Theorem 8.2 is proved.
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APPENDIX

Here we prove assertions (ii) of Theorems 5.2 and 7.2. Begin with some known

abstract facts. In a Banach space X consider a system of linear equalities and

inequalities:

�i(x) � 0; i 2 I; Gx = 0; (64)

where 8 i �i is a sublinear functional, such that the set �i(x) < 0 is nonempty,

and G is a linear operator fromX onto a Banach space Y: In [2] A.Ja.Dubovitskii

and A.A.Milyutin proved that the system with strict inequalities

�i(x) < 0; i 2 I; Gx = 0;

has no solution if and only if there exist �i � 0; x�i 2 @�i; i 2 I; and y
� 2 Y;

such that
P
�i + jjy�jj = 1; andX

�ix
�

i + y
�
G = 0: (65)

(Here @�i is the subdi�erential in the sense of convex analysis.) We denote by

� the set of all tuples � = (f(�i; x�i ); i 2 Ig; y�); satisfying these conditions.

Suppose that � is nonempty.
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De�nition. We say that an index i0 (or the constraint �i0(x) � 0 ) is

singular in system (64), if 8� 2 � the multiplier �i0 = 0: Otherwise we say that

i0 is nonsingular.

The following relation between this "dual" and a "primal" characterizations of

singular constraints holds.

Lemma A1. a) Suppose that 9x satisfying (64), such that �i0(x) < 0: Then

the index i0 is singular.

b) Let I0 be the set of all singular indices, and suppose that 8 j =2 I0 the

functional �j is linear. Then 9x satisfying (64), such that 8 i 2 I0 �i(x) < 0:

Proof. a) Suppose that i0 is nonsingular, i.e. 9� 2 � with �i0 > 0: From

x
�

i 2 @�i we have (x�i ; x) � �i(x) � 0 8 i; and < 0 for i0; whence this x violates

equation (65), a contradiction.

b) Denote by I1 = I n I0 the set of all nonsingular indices, and suppose there is

no such x; i.e. the cones Ki = fx j �i(x) < 0 g; i 2 I0; and C = fx j �j(x) �
0; 8 j 2 I1; Gx = 0 g do not intersect. By the Dubovitskii{Milyutin theorem [2]

there exists a nontrivial collection of pi 2 K�

i and q 2 C�
; such that

P
pi+q = 0:

For each i 2 I0; since the set �i(x) < 0 is nonempty, we have pi = ��ix�i ;
where �i � 0 and x

�

i 2 @�i: The collection of �i is nontrivial, because otherwise

all pi = 0; and then also q = 0; a contradiction. Now, since for each j 2 I1

we assume �j(x) = (lj ; x); where lj 2 X
�
; then by the Farkas lemma q =

�P�jlj � y
�
G; where �j � 0 and y

� 2 Y: Summarizing these expressions for

pi and q; we get X
I0

�i x
�

i +
X
I1

�j lj + y
�
G = 0:

The collection (�i; �j; y
�); properly normalized, belongs to �; and sinceP

I0
�i > 0; there is an i0 2 I0; such that �i0 > 0: This contradicts the

singularity of i0: Lemma A1 is proved.

Let us return to our Problem A in the space W: First we note that for some

" > 0; 8 t; in the "-neighborhood of û(t) the set U coincides with the polyhedron

M , given by inequalities (27), and hence, for some (may be smaller) " > 0; 8 t;
in the ball B"(0) the set U � û(t) simply coincides with its tangent cone N =

f�u j (as; �u) � 0; s 2 S0g: Since U has nonempty interior, so does N: Put, for

convenience in notation, ŵ = 0; then in a neighborhood of zero U = N:

Recall that we denote N = f �w(t) = (�x(t); �u(t)) 2 W j �u(t) 2 N a.e. on [0; T ] g:



CONDITIONS FOR SINGULAR EXTREMALS 31

Consider the following system of linear equalities and strict inequalities in W :

'
0

i(0)�p < 0; i 2 I; K
0(0)�p = 0; �x = A�x+ B�u; �u 2 intN :

The last inequality can be written as

�(�u) = min
s2S0

ess sup (as; �u(t)) < 0;

where obviously � is a sublinear functional. The stationarity of ŵ means that this

system has no solution, which by the Dubovitskii{Milyutin theorem is equivalent

to the existence of Lagrange multipliers � = (�i; � 2 RdimK
;  2 L1; �s 2 L1);

such that �i � 0 8 i 2 I; �s(t) � 0 a.e. on [0; T ] 8 s 2 S0; and the Euler{

Lagrange equation holds: for all �w 2W
X

�i'
0

i �p+K
0 �p+

Z
 (�x� A�x�B�u) dt+

XZ
�s �u dt = 0

For Problem A this condition is equivalent to MP.

The total singularity of ŵ (i.e. its singularity w.r.t. all U ) is equivalent to that

all �s(t) = 0 for all such �-s, and by Lemma A1 the last property is equivalent to

the existence of �w� 2 W; such that

'
0

i(0) �p� < 0; K
0(0) �p� = 0; _�x� = A�x� +B�u�; (66)

�u� 2 intN ; i.e. 9 "� > 0 such that B"�(�u�(t)) � N a.e. on [0; T ]:

(Recall that system (66) de�nes the critical cone K.) We can take jj �w�jj � 1: These

�w� and the corresponding "� > 0 will be used in what follows.

Let us establish a simple property of the cone N in R
k
: De�ne the function

�N (u) =
P

s2S0
(as; u)

+
; and pick any �u 2 intN and " > 0; such that B"(�u) � N:

Lemma A2. For any � there exists C = C(N; "; �); such that 8 � > 0; 8u 2
R
k with �N (u) � �; the point u+ �C�u lies in the �� -interior of N; i.e.

u+ �C�u+B��(0) � N:

Proof. In view of homogeneity of this property, we can consider only the case

when � = 1; i.e. to prove that for some C; if �N (u) � 1; then (u+C�u)+B�(0) �
N:

Obviously, 9C0 = C0(N; ") such that for all these u we have u + C0�u 2
N: Then, 9C1 = C1(N; "; �) such that for all u0 2 N the point u

0 + C1�u lies in

the �-interior of N: Taking C = C0 + C1; we get the required property.

Now we recall the known estimate of the distance to the level set of an operator g,

mapping a Banach space X to another Banach space Y (see e.g. [11]). Suppose, g
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is strictly di�erentiable at a point x0 2 X (e.g. continuously Frechet di�erentiable

at x0), g(x0) = 0; and denote M = fx j g(x) = 0g: If g
0(x0) is onto

(i.e. g satis�es Lyusternik condition at x0), then there exist a number L and a

neighborhood B(x0); such that

8x 2 B(x0) dist (x;M) � L jjg(x)jj: (67)

Finally, we prove an estimate for the increment of the function

�0(w) =
X

'
+
i (p) + jK(p) j+

Z
j _x� f0(x)� F (x)u j dt; (68)

which is crucial for our purposes.

Lemma A3. Let wn ! 0; �w 2 K; and "n ! 0:

Then �0(wn + "n �w) � �0(wn) + o ("n):

Proof. Consider the increment of the �rst term in (68) (we omit i):

'
+(pn + "n�p) = ['(pn) + '

0(pn) � "n�p+ o ("n) ]
+ �

(because (�)+ is a sublinear functional)

� '
+(pn) + "n ['

0(pn) �p ]
+
+ o("n): (69)

Since '0(pn) ! '
0(0); and '

0(0) �p � 0 (because �w 2 K ), the second term in

(69) is o("n); whence for the increment of the �rst term in (68) we obtain the

desired estimate. Similar arguments work for other two terms in (68). Lemma A3

is proved.

Proof of Theorem 5.2 (ii). In view of assertion (i), we have to show, that if

9 a > 0 and a neighborhood B(ŵ); such that 8w 2 B(ŵ) satisfying (1), (4) with

u 2 N; the inequality �(w) � a(w) holds, then 9 a0 > 0 and a neighborhood

B0(ŵ); in which the inequality �(w) � a
0
(w) holds. (The reverse implication is

trivial.) We prove the contrary-reverse implication, i.e. if 9wn ! 0; such that

�(wn) = o((wn)); then 9w0

n ! 0 satisfying (1), (4) with u
0

n 2 N; such that

�(w0

n) = o((w0

n)):

Thus, suppose that 9wn ! 0 with �(wn) � �n (wn); where �n ! 0:

In particular, we have �N (un) � �n (wn): Denote by L the constant from the

Lyusternik estimate (67) for the operator g; corresponding to equality constraints

(1) and (4) (see Def. 5.1).

By Lemma A2, taking �u = �u�(t); " = "� (uniform for a.a. t), and � = 2L; we

get �n = �n (wn); and w
0
n = wn +C �n �w�; such that

B��n (u
0

n) � N: (70)
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In particular, u0n 2 N; and hence �(w0
n) = �0(w

0
n): By Lemma A3 we have

�0(w
0

n) � �0(wn) + o(�n(wn)) � 2�n (wn)

for large enough n: The point w0

n violates equalities (1) and (4) not more than by

�0(w
0

n): Using estimate (67), we get a point w00

n satisfying these equalities, such

that jjw00
n � w

0
njj � L � 2�n (wn) = ��n (wn): In particular, ju00n(t) � u

0
n(t) j �

��n (wn); and due to (70) we have u
00
n(t) 2 N: Since the function �0 is

Lipschitzian (at least in a neighborhood of zero), then

�(w00

n) = �0(w
00

n) � �0(w
0

n) + const jjw00

n� w
0

njj �

� 2�n (wn) + const � 2L�n (wn) = o((wn)):

Finally, since jjw00
n � wnjj � o( (wn)); we obviously have (w00

n) � (wn); so

we may write �(w00
n) � o( (w00

n)): Thus, we get the desired sequence w00
n ! 0;

satisfying (1), (4) and the last estimate, with u
00

n(t) 2 N; q.e.d.

Proof of Theorem 7.2 (ii) is similar to the previous one. We have to show,

that if there exists a sequence fwng 2 �(U; ŵ); such that �(wn) = o((wn));

then there exists a sequence fw0

ng 2 �(U; ŵ) satisfying equalities (1), (4) with

u
0

n 2 N; such that �(w0

n) = o((w0

n)): The only two points in the previous proof,

where we used that jjwnjj ! 0; were those, when we used Lyusternik estimate

(67) and the Lipschitz continuity of �0 in a neighborhood of zero. The validity of

these properties in a neighborhood of zero is not su�cient now, because Pontryagin

sequences do not, generally, converge to zero in the norm of W: However, these

properties are valid not only in a neighborhood of zero, but on a more broad set

jjwjj1 = jx(0)j + jj _xjj1 + jjujj1 < "; for some " > 0: For estimate (67) this was

proved in [33, Part II], [34], while the Lipschitz continuity of �0 on this set (w.r.t.

jjwjj; or even w.r.t. jjwjj1) is rather obvious. Thus, in both these points the

previous proof remains valid, and so Theorem 7.2 (ii) is proved.
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