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Approximation theorem for a nonlinear

control system with sliding modes

A.V. Dmitruk 1

We consider the question of validity of the extension of a nonlinear control sys-
tem by introducing the so-called sliding modes (i.e., by convexifying the set of
admissible velocities) under the presence of constraints imposed on the endpoints
of trajectories. We prove that a trajectory of the extended system can be ap-
proximated by trajectories of the original system if the equality constraints of
the extended system are nondegenerate in the first order. The proof is based
on a nonlocal estimate for the distance to the zero set of the nonlinear operator
corresponding to the extended system, and involves a specific iteration process
of corrections.

1. Statement of the question

On a fixed time interval [0, T ], consider the control system

ẋ− f(x, u, t) = 0, (1)

g(x, u, t) = 0, (2)

K(x(0), x(T )) = 0, (3)

where x(t) is a state variable, u(t) a control, x ∈ ACm[0, T ] ( m− dimensional

absolutely continuous), u ∈ Lr
∞[0, T ] ( r− dimensional measurable and bounded).

The trajectories of equation (1) are subjected to the mixed constraint (2) of dimension

dim g = q and to endpoint constraint (3) of dimension dimK = s. We assume

that the function K of argument p = (x0, xT ) ∈ R2m is defined and continuously

differentiable on an open set P ⊂ R2m, and the functions f, g are defined and

continuous together with their first derivatives in x, u on an open set Q ⊂ Rm+r+1.

Let D = D(P ,Q) be the set of all pairs of functions (x(t), u(t)) from the space

ACm[0, T ]× Lr
∞[0, T ], for each of which there exists a compactum Γ ⊂ Q such that

(x(t), u(t), t) ∈ Γ a.e. on [0, T ] and (x(0), x(T )) ∈ P . By a solution to system

(1)–(3) we will call any pair of functions (x, u) ∈ D satisfying a.e. on [0, T ] equalities

(1), (2) and also satisfying (3).
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Along with system (1)–(3), we will also consider the following extended system with

the so-called sliding modes:

ẋ−
N∑

i=1

αi(t)f(x, ui, t) = 0, (4)

g(x, ui, t) = 0, i = 1, . . . , N, (5)

N∑

i=1

αi(t)− 1 = 0, (6)

K(x(0), x(T )) = 0, (7)

where N is a fixed natural number, all ui ∈ Lr
∞, αi ∈ L1

∞, and a.e. αi(t) ≥ 0, i =

1, . . . , N. Here, both the functions ui(t) and the ”weight coefficients” αi(t) play the

role of controls. For the sake of brevity, we adopt the notation: p = (x(0), x(T )) and

u = (u1, . . . , uN), α = (α1, . . . , αN), where all ui ∈ Lr
∞, αi ∈ L∞ .

The concept of solution to this system is a natural modification of the concept of

solution to system (1)–(3) (see below).

The vector-function α(t) = (α1(t), . . . , αN(t)) ∈ LN
∞ [0, T ] takes its values in the

simplex

A = {α ∈ RN | ∀ i αi ≥ 0,
N∑

i=1

αi = 1 }. (8)

Denote the set of vertices of this simplex by exA, so that α ∈ ex A means that α

is a base vector ei of the space RN for some i.

By the Caratheodory theorem, if N ≥ n, then the set of velocities in this system

at any point (x, t) is the convexification of the set of velocities in system (1)–(3) (the

convexity of the velocity set plays an important role, e.g., for the existence of solution

in optimization problems for such systems), but for our purposes the condition N ≥ n

is inessential, and we do not assume it.

It is clear that any trajectory x(t) of system (1)–(3) generated by a control u(t)

can also be considered as a trajectory of system (4)–(7) generated by a tuple of controls

with u1(t) = u(t), arbitrary u2(t), . . . , uN(t), and the weight coefficients α(t) =

(1, 0, . . . , 0). In this sense, the set of solutions to system (1)–(3) is naturally embedded

in the set of solutions to system (4)–(7). Of course, the reverse embedding does not

hold: an arbitrary trajectory x(t) of system (4)–(7) is not, in general, a trajectory of

system (1)–(3).

So, the question arises: when the passage to the extended system is justified, i.e.,

when a solution to system (4)–(7) can, in a sense, be approximated by trajectories of

the original system (1)–(3)?

A natural attempt to resolve this question is as follows. Consider first the case

when the equalities (2), and respectively (5), are absent. Let be given a solution

2



to system (4)–(7). Fix the controls u1(t), . . . , uN(t), and consider a sequence of

tuples of weight coefficients αn(t) ∈ exA weakly-* converging to the given tuple

of coefficients α(t) ∈ A, i.e., αi
n(t)

weak-*−→ αi(t) ∀ i = 1, . . . , N. (Such a sequence

always exists and can be easily constructed explicitly.) Set xn(0) = x(0). Then,

since equation (4) is linear with respect to α, the sequence of solutions xn(t) to this

equation converges to the given solution x(t) uniformly on the interval [0, T ]. If the

function K does not depend on x(T ) (i.e., the endpoint x(T ) is free), then, setting

un(t) =
∑N

i=1 αi
n(t) ui

n(t), we get a sequence of pairs (xn(t), un(t)) satisfying the

system (1)–(3) (in engineering applications such sequences are called sliding modes),

and so, the above question is successfully resolved. In the case when equalities (2)

and (5) are present, and the derivative g′u is nondegenerate along the given trajectory,

then, using the implicit function theorem, some components of the control can be

expressed in terms of the state variables and the remaining free control components,

and so, these equalities can be excluded and the situation can be reduced to the above

case. The described approach was actually used by N.N. Bogolyubov (see [4]), L.

Young [2], E.J. McShane [3]; after the famous paper of R.V. Gamkrelidze [1] it became

a standard tool in the control theory and has been repeatedly used by many authors

(see e.g., [5] – [12]).

However, if the function K does depend on both endpoints of the trajectory (e.g.,

the endpoints are fixed: x(0) = a, x(T ) = b ), then the above-constructed trajectories

have, in general, K(xn(0), xn(T )) 6= 0, so, the pairs (xn, un) do not satisfy system

(1)–(3), and hence, this approach does not work; it needs a modification.

2. Preliminary facts and the main result

1. We propose the following approach. Consider the constraints (4)–(7) as the

zero set of an operator F from the Banach space W = ACm × (Lr
∞)N × LN

∞ [0, T ]

with elements w = (x,u, α) and the norm ||w|| = ||x||AC + ||u||∞ + ||α||∞, where

||x||AC = |x(0)| + ||ẋ||1 , to the space Z = Lm
1 × (Lq

∞)N × L∞ [0, T ] × Rs with

elements z = (ξ, η, ν, κ), where η = (η1, . . . , ηN) with all ηi ∈ Lq
∞ , and the norm

||z|| = ||ξ||1 + ||η||∞ + ||ν||∞ + |κ|.
In the space W, define a set DN = DN(P ,Q) consisting of all triples (x,u, α)

such that ∀ i = 1, . . . , N the pair (x, ui) ∈ D(P ,Q). By a solution to system (4)–

(7) we will call any triple of functions (x,u, α) ∈ DN that satisfies equalities (4)–(6)

almost everywhere on [0, T ] and also satisfies (7).

The operator F is given by the left hand parts of equalities (4)–(7). Obviously, it

is Frechet differentiable at any point (x,u, α) ∈ DN , and its derivative

F ′(x,u, α) = G[x,u, α] : W −→ Z

maps as follows: (x̄, ū, ᾱ) 7→ (ξ̄, η̄, κ̄, ν̄), where

˙̄x−∑
αif ′x(x, ui, t) x̄−∑

αif ′u(x, ui, t) ūi −∑
ᾱif(x, ui, t) = ξ̄,
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g′x(x, ui, t) x̄ + g′u(x, ui, t) ūi = η̄i, i = 1, . . . , N,
∑

ᾱi(t) = ν̄.

K ′
x(0)(p) x̄(0) + K ′

x(T )(p) x̄(T ) = κ̄,

Clearly, the linear operator G[x,u, α] depends continuously on the point (x,u, α)

with respect to the operator norm, i.e., F is continuously differentiable on DN .

Let M be the zero set of the operator F, i.e., the set of all triples (x,u, α) ∈ W

satisfying equalities (4)–(7). The basic fact, upon which we will rely, is the following

estimate for the distance to the set M .

Theorem 1. Let a triple w0 = (x0,u0, α0) ∈ M be such that the operator

F ′(w0) maps ”onto”. Let A ⊂ LN
∞ [0, T ] be an arbitrary bounded set. Then there

exists numbers ε > 0, B and weak-* neighborhood V(α0) such that, for any triple

w = (x,u, α) satisfying the conditions

||x− x0||C < ε, ||u− u0||∞ < ε, (8)

α ∈ V(α0) ∩ A, (9)

the following estimate holds:

dist (w,M) ≤ B ||F (w)|| . (10)

Note that this estimate is of nonlocal character: α is taken not from an ordi-

nary neighborhood of α0 , but from a broader weak-* neighborhood. The proof of

Theorem 1 is given by the author in [19], [20], and [21, Ch. 5]; it is based on an

abstract generalization of the classical Lyusternik theorem proposed by A.A. Milyutin

(see [16, 20, 21]), which is also of intrinsic interest as a fact of functional analysis, being

a quite efficient tool in dealing with nonlinear equality constraints.

We will use Theorem 1 in the case when A is the set of functions α(t) ∈ LN
∞ [0, T ]

that take their values in the above simplex A.

2. Besides Theorem 1, we will also need two facts. The first one is based on a

specific property of the norm in the space L1[0, T ]. Denote for brevity ∆ = [0, T ].

Let us assume here that A is an arbitrary closed and bounded polyhedron in RN .

Denote by A the set of all vector-functions α(t) from LN
1 (∆) with values α(t) ∈ A

almost everywhere on ∆. By exA, denote the set of vertices of the polyhedron A.

Lemma 1 (on the L1− distance to almost vertices of a polyhedron).

Let a measurable function e(t) belong to exA a.e. on ∆, and a function α ∈ A
be such that

∫
∆ |α(t)− e(t)| dt ≤ δ, where δ > 0. Let a sequence of functions αn ∈ A
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weakly converge to α (i.e., αi
n

weak−→ αi ∀ i = 1, . . . , N w.r.t. the functions from

L∞). Then, for sufficiently large n,

||αn − α ||1 ≤ Cδ, (11)

where the constant C depends only on the polyhedron A and does not depend on the

functions αn(t), α(t) .

Proof. Since the number of vertices of any polyhedron is finite, we can assume

that a given vertex is constant: e(t) ≡ e ∈ exA. Consider first the simplest particular

case in which the proof is completely clear.

Let N = 1, A = [0, 1], and e = 0. Then, by the assumption, the function

α(t) ∈ [0, 1] is such that
∫

α(t) dt ≤ δ, and the sequence αn(t) is such that

0 ≤ αn(t) ≤ 1 and αn
weak−→ α.

The key fact is that, for the nonnegative functions ᾱ(t) ≥ 0, the norm of the space

L1(∆) is a linear functional:

|| ᾱ ||1 =
∫

∆
ᾱ(t) dt.

Using this observation and the conditions of the lemma, we obtain

||αn − α||1 ≤ ||αn||1 + ||α||1 =
∫

αn dt +
∫

α dt =

=
∫

(αn − α) dt + 2
∫

α dt < 3δ

for sufficiently large n. (The first integral in the last row is smaller than δ by virtue

of the convergence αn − α
weak−→ 0.)

In order to prove the lemma in the general case, one should note that, for any

polyhedron and any its vertex e, there always exist a number γ > 0 and a unit

vector p ∈ RN such that | a− e | ≤ γ (p, a− e) for all a ∈ A (this follows from the

fact that the tangent cone to a polyhedron at any its vertex is pointed). Then,

||αn − α||1 ≤ ||αn − e||1 + ||α− e||1 ≤

≤ γ
∫

(p, αn − e) dt + γ
∫

(p, α− e) dt =

= γ
∫

(p, αn − a) dt + 2γ
∫

(p, α− e) dt <

< δ + 2γ||α− e||1 < (1 + 2γ) δ.

It remains to set C = 1 + 2γ . The lemma is proved. 2

We will use this lemma in the case when A is the simplex (8).
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Note a nice corollary from Lemma 1, although it will not be used in this paper.

Theorem 2. Let, as above, A be a convex polyhedron in RN . Let α(t) ∈
ex A, αn(t) ∈ A almost everywhere, and αn

weak−→ α. Then ||αn − α||1 → 0.

Thus, if a sequence of functions takes values in a convex polyhedron and weakly

converges to its vertices, then it converges to them in the norm of L1 .

For the proof, one should only note that the condition of Lemma 1 is satisfied here

with any δ > 0, and hence, estimate (11) implies the required convergence.

For an arbitrary convex compactum and exA being the set of its extreme points,

Theorem 2 was proved in [14, 15].

3. Another fact that we need concerns the control systems linear in control:

ẋ = f(x, t) + G(x, t) v. (12)

Assume here that x ∈ Rm, v ∈ Rk, the vector-function f and matrix G, together

with their derivatives fx , Gx , are defined and continuous in an open set R ⊂ Rm+1.

Let a pair of functions (x0, v0) ∈ ACm[0, T ]×Lk
1[0, T ] be such that (x0(t), t) ∈ R

everywhere on [0, T ] and satisfy equation (12). Denote x0(0) = a0 .

Lemma 2. Let a sequence of functions vn ∈ Lk
1[0, T ] be such that vn

weak−→ v0

(weakly with respect to Lk
∞[0, T ]), and a sequence of vectors an ∈ Rm be such that

an → a0 . Then, for sufficiently large n, equation (12) with v = vn(t) and initial

condition xn(0) = an has a unique solution xn(t) on [0, T ], and moreover, xn(t) =⇒
x0(t) uniformly on [0, T ].

In brief, this lemma can be stated as follows: if a system is linear in the control, and

controls converge weakly, then the corresponding state variables converge uniformly.

This fact is likely to be well known, but we can not indicate a concrete reference to its

proof, so we give it here.

Proof. Since the graph of the trajectory x0(t) is a compact subset of R, its

closed ε− neighborhood also contains in R for some ε > 0. Without loss of generality

we assume that, in this ε− neighborhood, the functions f, G are uniformly bounded

and Lipschitz continuous in x with a constant K common for all t.

From the general theorems on the existence of solutions to differential equations, it

follows that ∀n, in some neighborhood On of the point t0 = 0, equation (12) with

v = vn(t) and initial condition xn(0) = an has a solution xn(t), which is unique and

can be extended to an interval ∆n = [t0, t0 + δn], at least while it remains within the

ε− tube around the trajectory x0(t). Let us estimate the length of this interval.

Set xn = x0 + x̄n , vn = v0 + v̄n , an = a0 + ān .
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By the assumption, v̄n
weak−→ 0, ān → 0, and the following equations hold on each ∆n :

ẋ0 = f(x0, t) + G(x0, t) v0 , x0(t0) = a0 ,

(x0 + x̄n)• = f(x0 + x̄n, t) + G(x0 + x̄n, t)(v0 + v̄n) , xn(t0) = a0 + ān .

Then, x̄n satisfies on ∆n the equation

˙̄xn = Γ(x̄n, t) + Λ(x̄n, t) vn + G(x0, t) v̄n , x̄n(t0) = ān , (13)

where the functions

Γ(x̄, t) = f(x0(t) + x̄, t)− f(x0(t), t), Λ(x̄, t) = G(x0(t) + x̄, t)−G(x0(t), t),

satisfy the estimates for |x̄| ≤ ε : |Γ(x̄, t)| ≤ K|x̄|, |Λ(x̄, t)| ≤ K|x̄|.
In order to estimate |x̄n|, let us pass to the integral form of equation (13). First,

note that since v̄n
weak−→ 0 in L1 with respect to L∞ , the Dunford–Pettis criterion [13]

implies that the family of functions v̄n has a common modulus of absolute continuity of

the Lebesgue integral, i.e., there exists a function µ : (0,∞) → (0,∞) with µ(δ) → 0

as δ → 0+ such that, for any set E ⊂ [0, T ] with mesE ≤ δ,

∀n
∫

E
|v̄n| dt ≤ µ(δ).

We can assume that µ is nondecreasing and continuous, and that it is also suited for

the function v0(t).

Consider the integral of the last term in (13):

hn(t) =
∫ t

0
G(x0(τ), τ) v̄n(τ) dτ, t ∈ [0, T ].

Since |G(x0(τ), τ)| ≤ K, and v̄n
weak−→ 0, we have hn(t) → 0 ∀ t ∈ [0, T ].

Moreover, since ∀ t′, t′′ ∈ [0, T ]

|hn(t′′)− hn(t′)| ≤ K
∫ t′′

t′
|v̄n(τ)| dτ ≤ Kµ(t′′ − t′),

the function Kµ(δ) is a common modulus of continuity for all functions hn(t) on

[0, T ], hence the pointwise convergence hn(t) → 0 implies the uniform convergence

hn(t) =⇒ 0 on [0, T ].

The integral form of equation (13) is as follows:

x̄n(t) = ān +
∫ t

0
(Γ(x̄n, τ) + Λ(x̄n, τ) vn) dτ + hn(t).

Therefore, max |x̄n(t)| on ∆n = [t0, t0 + δn] can be estimated as

||x̄n||C ≤ K ||x̄n||C δn + ||x̄n||C 2µ(δn) + |ān|+ ||hn||C ,
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so

||x̄n||C (1−Kδn − 2µ(δn)) ≤ |ān|+ ||hn||C → 0. (14)

It remains to show that the coefficient at ||x̄n||C can be bounded away from zero. To

this end, set all δn = δ̂, where δ̂ > 0 is a solution to the equation Kδ̂ + µ(δ̂) = 1/2 .

Obviously, such a solution exists (and is unique). Then, the estimate (14) guarantees

that for sufficiently large n, on the common fixed interval ∆̂ = [t0, t0 + δ̂], we have

1

2
||x̄n||C ≤ |ān|+ ||hn||C → 0,

hence, a solution to equation (13) exists on ∆̂, remains in the tube |x̄| ≤ ε, and

moreover, uniformly converges to zero. In particular, x̄(t0 + δ̂) → 0.

Now, take a new initial point t1 = t0 + δ̂ and consider the next interval [t1, t1 + δ̂]

of the same length δ̂. Since all the above estimates are still valid on this new interval,

equation (13) still has a solution here, which uniformly converges to zero. Further,

take the initial point at t2 = t1 + δ̂, and so on. In a finite number of such steps we

will cover the whole interval [0, T ]. The lemma is proved. 2

Remark. One can see from the proof, that the smoothness in x and continuity

in t of the functions f, G are not necessary; it is sufficient to assume that they are

uniformly bounded on R, measurable in t and uniformly Lipschitz continuous in x

with a constant common to almost all t .

Lemma 2 is proved here for the weakest convergence (among the ”standard” ones)

of the functions vn . For example, if vn belong to L∞ and converge to v0 weakly-*

(i.e., with respect to the functions from L1 ), then certainly these vn belong to L1

and converge to v0 weakly with respect to the functions from L∞ , hence Lemma 2

is also valid in this case. This is the case in which we will use this lemma below.

4. In addition, note one more interesting fact related to the linear operator F ′(w).

Suppose it maps ”onto”. Then its second component (i.e., the mapping (x̄, ū) 7−→
gx x̄ + gu ū) is also ”onto”. What can be said in this case about the matrices gx and

gu (assuming them to be measurable and bounded)? It turns out that the matrix gx

can be absolutely arbitrary, whereas gu(x(t), u(t), t) must necessarily be of full rank

uniformly in t. This is just the condition which is always assumed to hold for the

constraint g(x, u, t) = 0 when it is included in an optimization problem.

Let us formulate this fact in the general form. Consider the operator P : Cm(∆)×
Lr
∞(∆) → Lq

∞(∆) acting by the rule

(x̄, ū) 7→ Γ(t) x̄(t) + Λ(t) ū(t) = η̄ ∈ Lq
∞(∆) , (15)

where the matrices Γ and Λ of dimensions q × m and q × r, respectively, are

measurable and essentially bounded. (Here, Cm(∆) is the space of m− dimensional

continuous functions on an interval ∆.) Let Bρ denotes the ball of radius ρ centered

at the origin in the corresponding space.
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Lemma 3. The operator P is surjective if and only if the matrix Λ(t) is of

full rank uniformly in t, i.e., it has an essentially bounded right inverse, or, which is

the same: ∃ δ > 0 such that Λ(t)B1 ⊃ Bδ a.e. on ∆ .

One more equivalent condition: det (Λ(t) Λ∗(t)) ≥ const > 0.

Proof. The sufficiency of this condition for the surjectivity is obvious. What is

nontrivial here, is necessity. Consider first the case m = r = q = 1, i.e., when

P (x̄, ū) = γ(t) x̄ + λ(t) ū ∈ L∞(∆),

where γ and λ are scalar functions. Since the operatot P is ”onto”, for some a > 0

we have

P (BC
1 ×BL∞

1 ) ⊃ BL∞
a . (16)

We must show that vraimin |λ(t)| > 0. Suppose the contrary: vraimin |λ(t)| = 0.

Then |λ(t)| ≤ a/3 on a set E of positive measure. Now, consider the function

γ. According to the Luzin’s C− property, E contains a closed set M of positive

measure, on which this function is continuous. Restrict the spaces C and L∞ to this

set M. Obviously, inclusion (16) still remains valid for these restricted spaces.

Take an arbitrary discontinuous function η̂ ∈ L∞(M) with ||η̂||∞ ≤ a having an

oscillation > a at a point θ ∈ M (i.e., lim supt→θ η̂(t) − lim inft→θ η̂(t) > a; hence,

in particular, θ is not isolated in M ). Then the ball Ba/3(η̂) obviously contains

discontinuous functions only (since their oscillations at θ are greater than a/3 ), and

therefore, has no common points with the set

Φ = { ϕ̄(t) = γ(t) x̄(t) | x̄ ∈ C(M), ||x̄||C ≤ 1},

since the latter entirely contains of continuous functions. But, in view of (16),

η̂ = ϕ̄ + λ(t)ū for some ϕ̄ ∈ Φ, ||ū||∞ ≤ 1,

hence ||ϕ̄− η̂||∞ ≤ ||λū||∞ ≤ a/3, and then ϕ̄ ∈ Ba/3(η̂), a contradiction.

The general case can be reduced to the considered one-dimensional case. We leave

it as an exercise to the reader. 2

5. Let us now state the main result of this paper. In the space W, along with

its natural norm-topology, we will also consider the (C, L∞, σ∗)− topology, which is

the product of the C− topology for x, the L∞− topology for u, and the weak-*

topology for α.

Theorem 3. Let a triple (x0,u0, α0) ∈ W satisfy the system (4)–(7), i.e.,

F (x0,u0, α0) = 0. Suppose that

a) αi
0(t) ≥ const > 0 almost everywhere on [0, T ] ∀ i = 1, . . . , N,

i.e., the point α0(t) = (α1
0(t), . . . , α

N
0 (t)) is located uniformly inside the simplex A;
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b) the derivative F ′(x0,u0, α0) maps W onto Z.

Then, in any (C,L∞, σ∗)− neighborhood of the triple (x0,u0, α0) there exists a

triple (x̂, û, α̂) still satisfying system (4)–(7) and such that each function α̂i(t) takes

only two values: 0 and 1 (i.e., α̂i(t) is the characteristic function of a measurable set

Ei ⊂ [0, T ] ).

Introducing an ”ordinary” control û =
∑

α̂i(t) ûi(t), one obtains a pair (x̂, û)

satisfying the original system (1)–(3). It is this sense in which Theorem 3 allows one to

approximate the trajectory (x0,u0, α0) of the extended system (4)–(7) by trajectories

of the original system (1)–(3).

In fact, this theorem justifies the validity of the passage from the original control

system to its extension by means of sliding modes. In the Western literature such

theorems are often called relaxation theorems.

3. Proof of Theorem 3

Recall the notation u = (u1, . . . , uN) and α = (α1, . . . , αN), where all ui ∈
Lr
∞, αi ∈ L∞ , and also recall that for w = (x,u, α) ∈ W the norm is

||w|| = ||x||AC + ||u||∞ + ||α||∞ , where ||u||∞ =
∑ ||ui||∞ . To simplify the nota-

tion, we do not further write the tuple u in the bold face; hopefully, this will not

cause confusion.

1) Let be given an arbitrary (C,L∞, σ∗)− neighborhood of the point w0 =

(x0, u0, α0). According to Theorem 1, we can assume that the estimate (10) holds there

in. Moreover, this neighborhood always contains a closed neighborhood Ω = Ω(w0, ε)

of the form

||x− x0||C ≤ ε, ||u− u0||∞ ≤ ε,

α ∈ V(α0, ε) = {α ∈ LN
∞ : |〈lj, α− α0〉| ≤ ε, j = 1, . . . , σ },

where ε > 0, σ is a natural number, and all lj(t) ∈ LN
1 [0, T ] with ||lj||1 ≤ 1.

Fix for what follows the functions lj(t), and, for brevity in notation, introduce a tu-

ple of functionals l = (l1, . . . , lσ), so that 〈l, α〉 is a vector 〈l, α〉 = (〈l1, α〉, . . . 〈lσ, α〉).

The required point ŵ = (x̂, û, α̂) ∈ Ω ∩ M will be obtained as the limit of a

sequence of points wk = (xk, uk, αk) ∈ Ω∩M which will be now constructed starting

from the point w0 .

For any δ ∈ [0, 1) denote by A(δ) the simplex in the space RN obtained by

contracting the original simplex A with coefficient (1− δ) with respect to its center.

Thus, A(0) = A, and for any δ > 0 the simplex A(δ) lies inside A “at the depth

δ ”. The condition (a) of the theorem means that, for some δ > 0, we have α0(t) ∈
A(δ) a.e.
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Now, fix the obtained ε, δ, and define the sequences

εn = ε/2n, δn = δ/3n, n = 0, 1, 2, . . . ,

(so, ε0 = ε, δ0 = δ ), and then set

γn =
1

B
·min

{
εn

4
,

δn

3

}
,

where B is the constant from (10), so that Bγn ≤ εn/4 and Bγn ≤ δn/3.

2) Make the first step. By the assumption, we have F (w0) = 0, i.e., the point w0

satisfies equalities (4)–(7). Consider equality (4) as an equation with respect to x for

the fixed u = u0 and α
weak-*−→ α0 with the initial condition x(0) = x0(0). Since this

equation is linear in α, we have by Lemma 2 that the corresponding solutions satisfy

||x− x0||C → 0.

Since α0(t) ∈ A(δ0) and A(δ0) ⊂ A(2δ0/3), the above α with α
weak-*−→ α0 can

be chosen to take its values in the vertices of the simplex A(2δ0/3), and hence, there

exists α̃(t) ∈ exA(2δ0/3) such that

|〈l, α̃− α0〉| < ε0/4,

i.e., α̃ ∈ V(α0, ε0/4), and moreover, ||x̃− x0||C < ε0/4 ,

||F (x̃, u0, α̃)− F (x0, u0, α0)|| < γ0 .

(The first and third components of F (x̃, u0, α̃) vanish by the definition of x̃, α̃, and

the remaining two do not depend on α; therefore, they are close to the corresponding

components of the operator F (x0, u0, α0) for x̃(t) uniformly close to x0(t). )

The obtained triple (x̃, u0, α̃) obviously lies in Ω; hence, it satisfies estimate (10),

according to which there exists a point w1 = (x1, u1, α1) ∈ M such that ||w1 −
(x̃, u0, α̃)|| < Bγ0 . We then have

||x1 − x0||C ≤ ||x1 − x̃||+ ||x̃− x0|| < Bγ0 + ε0/4 ≤ ε0/4 + ε0/4 = ε0/2 = ε1 ,

||u1 − u0||∞ < Bγ0 ≤ ε0/4 < ε0/2 = ε1 ,

and

|〈l, α1 − α0〉| ≤ |〈l, α1 − α̃〉|+ |〈l, α̃− α0〉| ≤
≤ ||l||1 · ||α1 − α̃||∞ + ε0/4 ≤ 1 ·Bγ0 + ε0/4 < ε0/4 + ε0/4 = ε1 ,

i.e., the new point w1 = (x1, u1, α1) ∈M satisfies the conditions:

||x1 − x0||C < ε1, ||u1 − u0||∞ < ε1 , α1 ∈ V(α0, ε1),
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and so w1 ∈ Ω(w0, ε1), which, in view of relation ε1 = ε0/2, implies that Ω(w1, ε1) ⊂
Ω(w0, ε0) = Ω.

Moreover, since α̃ ∈ ex A(2δ0/3) and ||α1 − α̃||∞ < Bγ0 ≤ δ0/3, we have, on the

one hand,

α1(t) ∈ A(2δ0/3−Bγ0) ⊂ A(δ0/3),

and on the other, dist (α1(t), ex A) ≤ 2δ0/3 + Bγ0 ≤ δ0 .

Thus, the following conditions also hold:

a.e. α1(t) ∈ A(δ1),

a.e. dist (α1(t), ex A) ≤ 3δ1 . (17)

The first step is accomplished. It is, in a sense, a preliminary one and is slightly

different from the others. (We obtain that α1 satisfies estimate (17).) The following

steps are exactly iterations of one and the same procedure.

3) Suppose that, for k = 1, . . . , n, we obtained points wk = (xk, uk, αk) ∈ M
satisfying the conditions:

||xk − xk−1||C < εk, ||uk − uk−1||∞ < εk , (18)

αk ∈ V(αk−1, εk), (19)

Ω(wk, εk) is contained in Ω, (20)

a.e. αk(t) ∈ A(δk), (21)

a.e. dist (αk(t), exA) ≤ 3δk . (22)

Starting from the point wn , let us construct a point wn+1 . To this end, consider

equality (4) as an equation with respect to x for the fixed u = un and α
weak-*−→ αn

with the initial condition x(0) = xn(0). By Lemma 2, the corresponding solutions

satisfy ||x− x0||C → 0.

Since αn(t) ∈ A(δn) and A(δn) ⊂ A(2δn/3), there exists

α̃(t) ∈ ex A(2δn/3), (23)

such that |〈l, α̃− αn〉| < εn/4, i.e., α̃ ∈ V(αn, εn/4), and moreover,

||x̃− xn||C < εn/4,

||F (x̃, un, α̃)− F (xn, un, αn)|| < γn . (24)

In addition, by Lemma 1 and in view of estimate (22), we can assume that

||α̃− αn||1 ≤ 9N δn . (25)

12



Obviously, (x̃, un, α̃) ∈ Ω(wn, εn) ⊂ Ω, and hence, (24) implies that there exists a

point wn+1 ∈M such that

||wn+1 − (x̃, un, α̃)|| < Bγn . (26)

(The functions x̃ and α̃ are not marked by indices; they are just intermediate aux-

iliary points at each step.) Then,

||xn+1 − xn||C ≤ ||xn+1 − x̃||+ ||x̃− xn|| < Bγn + εn/4 ≤ εn/4 + εn/4 = εn/2 = εn+1 ,

||un+1 − un||∞ < Bγn ≤ εn/4 < εn/2 = εn+1 ,

and

|〈l, αn+1 − αn〉| ≤ |〈l, αn+1 − α̃〉|+ |〈l, α̃− αn〉| ≤
≤ ||l||1 · ||αn+1 − α̃||∞ + εn/4 ≤ 1 ·Bγn + εn/4 < εn/4 + εn/4 = εn+1 ,

i.e., αn+1 ∈ V(αn, εn+1). Thus, wn+1 ∈ Ω(wn, εn+1) and, taking into account (20)

and the relation εn+1 = εn/2, we get Ω(wn+1, εn+1) ⊂ Ω(wn, εn) ⊂ Ω.

Next, in view of (26) we have ||αn+1 − α̃||∞ < Bγn ≤ δn/3, and then (23) implies

the relations

αn+1(t) ∈ A(2δn/3−Bγn) ⊂ A(δn/3 = δn+1),

dist (αn+1(t), exA) ≤ 2δn/3 + Bγn ≤ δn = 3δn+1 .

We see that conditions (18)–(22) hold for k = n + 1, and therefore, it is possible to

make the next step, from wn+1 to wn+2 .

Finally, (25) and (26) yield one more important estimate

||αn+1 − αn||1 ≤ ||αn+1 − α̃||∞ + ||α̃− αn||1 ≤

≤ Bγn + 9N δn ≤ 1

3
δn + 9N δn < (9N + 1) δn ,

that holds at each step of our process.

4) Thus, we obtain a sequence of points wk = (xk, uk, αk) ∈ M, k = 1, 2, . . . ,

each of which satisfies conditions (18)–(22) and the additional estimate

||αk+1 − αk||1 ≤ (9N + 1) δk .

Due to this estimate and to (18), the sequence wk is fundamental (i.e., is a Cauchy

sequence) with respect to the norm ||x||C + ||u||∞ + ||α||1 , and hence, it has a limit

ŵ = (x̂, û, α̂) in the space C×L∞×L1 (broader than our space W = AC×L∞×L∞).

Thus,

||xk − x̂||C → 0, ||uk − û||∞ → 0, ||αk − α̂||1 → 0. (27)

Let us now see what conditions hold for the limit triple.
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Since the equation F 1(wk) = 0 holds for all k, where F 1(w) is the first component

of operator F (w), then, considering the integral form of this equation, we conclude

that the limit x̂(t) also satisfies this integral equation, which implies that actually x̂

belongs to AC(∆) and satisfies the equation F 1(ŵ) = 0 (hence, ||xk − x̂||AC → 0 ) .

The components F 2 and F 4 do not involve ẋ, α, and hence, the limit equalities

F 2(x̂, û) = 0 and F 4(x̂, û) = 0 are obviously satisfied.

Now, for any closed set V ⊂ RN , the set of functions α ∈ LN
1 (∆) such that

α(t) ∈ V a.e., is obviously closed in LN
1 (∆). This implies that α̂(t) ∈ A a.e., so

α̂(t) is bounded, i.e., α̂ ∈ LN
∞(∆) and F 3(α̂) =

∑
α̂i(t)− 1 = 0.

Thus, the limit point ŵ belongs to the space W and satisfies the equality F (ŵ) =

0, i,e., ŵ ∈ M. One can easily see that the set Ω is closed with respect to the

convergence (27) (here one should use the fact that, if a sequence ᾱk is bounded in

LN
∞(∆) and ||ᾱk||1 → 0, then

∫
∆ l ᾱk dt → 0 for all l ∈ LN

1 (∆) ); therefore (20)

implies that ŵ ∈ Ω. (This can be also obtained by summing estimates (18) and (19).)

Finally, estimate (22) implies that ∀ ρ > 0, for large enough n, we have

dist (αk(t), exA) ≤ ρ almost everywhere on ∆, i.e., αk(t) belongs to the closed

ρ− extension of the set of vertices of simplex A. Then, the limit α̂(t) also belongs

almost everywhere to this ρ− extension, and since ρ > 0 is arbitrary, it belongs to

the intersection of all ρ− extensions, which coincides with the set of vertices exA,

since the last one is closed. Thus, α̂(t) ∈ exA almost everywhere, which means that

each component α̂i(t) can take only two values: 0 or 1. The theorem is proved. 2

4. Comments

1. Condition (b) of Theorem 3 is essential — without it this theorem is not valid. A

counterexample is easily obtained from the classical example of Bolza; namely, consider

the system

ẋ = u, ẏ = x2 + (u2 − 1)2, y(0) = y(1) = 0.

The set of its solutions is empty, since for any x(t) and y(0), always y(1) > y(0).

However, the corresponding extended (convexified) system

ẋ = α1 u1 + α2 u2, ẏ = x2 + α1 (u2
1 − 1)2 + α2 (u2

2 − 1)2,

α1 + α2 = 1, y(0) = y(1) = 0

(here, we use the subscript indices) has a solution x(t) ≡ y(t) ≡ 0 generated by the

controls α1 = α2 = 1/2, u1 = −1, u2 = 1, and this solution cannot be approximated

by solutions of the original system, because the latter are just missing. The cause of

this situation is that the given solution does not satisfy condition (b): the equality

constraints of the extended system are degenerate.
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2. As to condition (a), it plays a rather technical role, and probably can be excluded.

For example, one can proceed as follows. For any δ > 0, consider the set

Eδ = { t | ∀ i αi(t) ≥ δ a.e. on [0, T ] },

outside of which all the functions ui, αi should be fixed, and vary the controls ui and

αi only on this set, i.e., consider them as elements of the spaces Lr
∞(Eδ) and L∞(Eδ)

respectively. As δ → 0, the measure of Eδ tends to the full measure of the interval

[0, T ]. This implies that, if the original operator F ′(w0) : W → Z is surjective, then

for small δ > 0 its restriction to the corresponding space Wδ , defined on Eδ , will

also remain surjective, and therefore, all the above procedure of iterative corrections

should also work in this case. Of course, these preliminary considerations require a

thorough study.

3. Theorem 3 can be applied to the proof of the Maximum principle for optimal

control problems with terminal, state, and regular mixed constraints by introducing

sliding modes. The author got to know the idea of such proof from A.A. Milyutin as

early as in the mid 1970s; at that time he implemented it and later published in [17]

and [21, Ch. 4]. A similar theorem was proved by S.V. Chukanov [18] for control

systems governed by integral equations, and he also applied it to the proof of the

corresponding Maximum principle.
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