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It is well known in the theory of extremal problems that the abnormal case, i.e. the case when

equality constraints are degenerate at the examined point, is a di�cult subject to obtain higher

order conditions of a local minimum. Especially it is true for necessary conditions. The matter is

that "standard" necessary conditions, relevant to the general case, are always trivially ful�lled in

the abnormal case and do not provide any information about the presence or absence of a local

minimum at the given point. Here we present a method of treatment extremal problems with

degenerate equality constraints, originally proposed by A.A.Milyutin. It consists of the passing

from the given problem to another one, in which the equality constraints are nondegenerate.

Application of this method and of its re�nement allows one to obtain informative quadratic order

necessary conditions for local minima in some classes of problems.
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1. GENERAL NECESSARY CONDITIONS

Consider the following Problem I:

J = '0(w)! min; 'i(w) � 0; i = 1; : : : ; �; g(w) = 0;

where w belongs to a Banach space W , the image of g lies in a �nite-dimensional space Rq , and

all the functions possess expansions up to quadratic terms in a neighborhood of a point w0, which

is examined to be a point of local minimum.

To be precise, we assume that for the mapping g there exists a bilinear mapping Qg : W �W !

Rq, such that

g(w+ �w) = g(w) + g0(w0) �w+Qg( �w; �w) + �g(w; �w) k �w k
2;

where �g(wn; �wn)! 0 for any sequences wn ! w0 and �wn ! 0. (This assumption can be weakened,

see [3].) We denote 2Qg( �w; �w) = g00[w0] ( �w): The same assumption we take for all 'i; i = 1; : : : ; �.

We assume that w0 is a stationary point, i.e. there exists a collection of Lagrange multipli-

ers � = (�0; : : : ; �� ; �); where �i � 0; i = 0; : : : ; �; and � 2 Rq; such that
P�

i=0 j�ij +

j�j = 1; �i'i(w
0) = 0 8 i = 1; : : : ; �; and Lagrange function �[�](w) = �0'0(w) + : : : +

��'�(w) + �g(w) is stationary at w0 : �0[�](w0) = 0: Denote by � the set of all such collections

for w0: It is obviously a �nite{dimensional compact set.
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For any � let 
[�]( �w) be the second variation of �[�](w) at w0. Since �, generally, is not

unique, the question arises, which functional of the family 
[�]( �w) one has to consider. The answer

is [4] that a'priori one has to take all this family, and to consider its maximum over � 2 �. This

somewhat unusual functional appears in the �nite-dimensional problem already. Generally, for any

set M = f�g de�ne the functional 
 [M ]( �w) := sup�2M 
[�]( �w):

Denote by K the so-called cone of critical variations, consisting of all �w 2 W such that '0i(w
0) �w � 0

for all i 2 I; and g0(w0) �w = 0; where I = fi : 'i(w
0) = 0g [ f0g is the set of active indices.

In [4] the following necessary condition was obtained, which we regard as "the standard" (or

"canonical") one.

Theorem 1. Let w0 be a local minimum point in Problem I. Then for all �w 2 K


 [�]( �w) = sup
�2�


[�]( �w) � 0: (1)

Note that since 
[�]( �w) is linear with respect to �; the set � can be replaced in (1) by its convex

hull co �: However, it is desirable not to expand but to narrow the set of �; over which the

supremum is taken, because the more narrow set of �, the more strong is necessary condition (1). In

[3] A.A.Milyutin proved (among other results) the following strengthening of this condition, which

we also regard as a "standard" one.

For any set M = f�g denote by M+ the set of all � 2 M such that the quadratic functional


[�]( �w) is nonnegative on a subspace in W of a �nite codimension (which may depend on � ).

Theorem 2 (on �nite codimensions). If condition (1) holds on K, then (co�)+ is nonempty, and

for all �w 2 K


 [(co�)+]( �w) � 0: (2)

Corollary. If w0 is a local minimum point in Problem I, then (co�)+ is nonempty, and for all

�w 2 K inequality (2) holds.

2. FINITE CODIMENSIONS AND ITERATIONS OF GOH CONDITIONS

In order to show what means � 2 (co�)+, let us consider brie
y the case, when 
 is given in

the classical integral form (here we omit the argument �, and the bar over w): w = (x; u) 2 W =

ACm [0; T ]�Lr
1
[0; T ]; where ACm is the space of m�dimensional absolutely continuous functions,

_x = A(t)x+B(t)u; x(0) = 0; (3)


(w) = (SxT ; xT ) +

Z T

0

[(Q(t)x; x) + (P (t)x; u) + (R0(t)u; u)] dt; (4)

the matrices A;Q;R0 are measurable and essentially bounded, and P;B are smooth enough. Recall

the known Goh transformation: (x; u)! (�; y; u); where � = x� By; and

_y = u; y(0) = 0; (5)

so that
_� = A� + B1y; �(0) = 0; (6)


(x; u) = 
1(�; y; u) = (S1(�T ; yT ); (�T ; yT )) +
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+

Z T

0

[(Q1(t)�; �) + (P1(t)�; y) + (R1(t)y; y) + (V1(t)y; u) + (R0(t)u; u)] dt; (7)

where S1 is an (m+ r)� (m+ r)� matrix, B1 = AB � _B; and the matrix V1 is smooth skew-

symmetric. The term (C(t)�; u); and the symmetric part of (V1(t)y; u) are reduced to the presented

ones after the integration by parts in view of (5), (6).

This transformation can be repeated (if P1 and B1 are again smooth) in such a way that now

(�; y)! (�; z); � = � �B1z; _z = y; z(0) = 0; _� = A�+B2z (B2 = AB1 �
_B1); �(0) = 0; and so on,

until the smoothness of the initial P;B allows one to do it.

The classical Legendre condition for 
 means that R0(t) � 0 a.e. on [0; T ]. It may happen to exist

nontrivial intervals (a; b), on which R0(t) = 0 a.e. We will call them intervals of 0-degeneracy. We

will say that 
 satis�es Goh conditions of the 1-st degree, or, simply, 1-Goh conditions, if R0(t) � 0,

and on any interval of 0-degeneracy V1(t) = 0 and R1(t) � 0 a.e. If there are no intervals of 0-

degeneracy, then by de�nition 
 satis�es 1-Goh conditions. An interval of 0-degeneracy, on which

R1(t) = 0, we will call interval of 1-degeneracy. 
 satis�es 2-Goh conditions, if it satis�es 1-Goh

conditions and on any interval of 1-degeneracy V2(t) = 0 and R2(t) � 0 a.e., and so on. We then

say that 
 satis�es k-Goh conditions, if it satis�es (k � 1)-Goh conditions and on any interval of

(k � 1)-degeneracy Vk(t) = 0 and Rk(t) � 0 a.e. Thus, if 
 satis�es k-Goh conditions for some k,

and on any interval of (k� 1)-degeneracy Rk(t) > 0 a.e., then there are no intervals of k-degeneracy,

and automatically 
 satis�es m-Goh conditions for all m > k.

Lemma 1. Suppose that 
 of the form (3), (4) is nonnegative on a subspace in W of a �nite

codimension. Then 
 satis�es k-Goh conditions for all k � 1.

The proof follows, essentially, from that for the case k = 1, which we leave as an exercise to the

reader.

Observe however, that conditions (1) and (2) are informative only if the mapping g is nondegenerate

at w0, or, as is also said, satis�es Lyusternik condition: g0(w0) maps onto. Indeed, in this case co�

does not contain 0, hence it can be shown that co� � [�; �]��;where � � � > 0, which readily implies

that conditions (1) and (2) remain valid (in fact, equivalent to themselves) if one substitute co� by

�: But in the opposite case, when g0(w0) is not onto, there exists � 6= 0 such that �g0(w0) = 0; and

hence the collection �1 = (0; : : : ; 0; �) together with ��1 belongs to �, which implies that 0 2 co�

and then obviously 0 2 (co�)+, which yields 
[co�]( �w) � 
[(co�)+]( �w) � 
[0]( �w) = 0:

Thus, in the degenerate case conditions (1) and (2) are trivially ful�lled regardless of the presence

or absence of a local minimum at w0. So, it is highly desirable to have necessary conditions, that

remain informative in the degenerate case. To our knowledge, the �rst such conditions were obtained,

for optimal control problems, by A.J.Krener [1], A.A.Agrachev and R.V.Gamkrelidze [2] and then

by others. The method of [1, 2] consists of choosing appropriate families of control variations of the

so-called needle type, concentrated near an arbitrary point t� and parameterized by the widths of

the needles, and then of analyzing expansions of the corresponding state variations.

3. MILYUTIN's APPROACH: WEAKENING THE EQUALITY CONSTRAINTS

An original method to overcome the di�culty of degeneracy was proposed by A.A.Milyutin [3].

Its key idea is to replace the initial problem with degenerate equality constraints by another one

with nondegenerate equalities, and to apply "standard" quadratic necessary conditions to this new

problem. To be more precise, suppose that g is degenerate at w0: Then g can be taken as g = (g1; g2),

where g1 is nondegenerate at w
0 and g02(w

0) = 0 , and thereby Problem I can be presented in the

form (Problem Ia):

J = '0(w)! min; 'i(w) � 0; i = 1; : : : ; �;
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g1(w) = 0; g2(w) = 0:

Denote q2 = dim g2 and suppose that the quadratic mapping g002 [w
0](�) : W ! Rq2 (that is the

quadratic part of the expansion of g at w0) satis�es the following nondegeneracy condition, proposed

by A.A.Milyutin [3]:

Definition. We say that g002 [w
0](�) is nondegenerate in Milyutin's sense, if there exists a closed

convex solid (c.c.s.) cone K2 � Rq2 such that for any natural number m there exists a number

Q(m) such that for any z 2 K2; and any subspace � � W with codim � � m there exists �w 2 �

such that

g002 [w
0]( �w) = z and k �w k� Q(m)

q
jzj :

This condition is in a sense a quadratic analogue of the (�rst order) Lyusternik nondegeneracy

condition. It was also shown in [3] that the failure of this condition (i.e. the degeneracy of g002 [w
0])

means that there exists �2 6= 0 such that �2g
00

2 [w
0]( �w) = 0 on a subspace � � W of a �nite

codimension. K2 is called the super-Legendre cone for quadratic mapping g002 [w
0](�): The following

basic result was established.

Theorem 3 (A.A.Milyutin). Let w0 be a local minimum point in Problem Ia, and suppose that

g002 [w
0] is nondegenerate in the above sense. Then for any c.c.s. cone K � �intK2[f0g there exists

a number C > 0 such that w0 remains a local minimum point in the following Problem II:

J = max
i2I

'i(w) + Cjg2(w)j ! min;

g1(w) = 0; g2(w) 2 K:

Observe that in passing from Problem Ia to Problem II the nondegenerate equality constraints

(g1(w) = 0) remain una�ected, whereas the degenerate ones are replaced by an inequality. Thus,

the equality constraints in Problem II are nondegenerate, and the "standard" quadratic necessary

conditions can be e�cient. To apply them we have to present the "nonfunctional" inequality g2(w) 2

K in a "functional" form. It can easily be done if we choose the cone K to be �nite{faced, i.e. if K

is given by a �nite number of inequalities (bs; z) � 0; s = 1; : : : ; �: Then the inequality constraint

in Problem II takes the form:

(bs; g2(w)) � 0; s = 1; : : : ; �: (8)

The nonsmoothness of the functional J does not matter much, because J is the maximum of a �nite

number of smooth functionals, whereas the whole higher{order theory [4] is valid for problems with

such functionals.

Theorem 3 can be regarded as "a theorem on weakening the equality constraints", on the

quadratic level. It is proved in [3] for a wide abstract class of problems, and is well suitable for

obtaining conditions of a local minimum that are in terms of second variations of Lagrange func-

tions. Note again a rather unexpected trick in Theorem 3: the passage from equality to inequality

constraints. This trick is in a sense reverse to the known trick of Valentine (1939), in which one

passes from inequality to equality constraints by adding the squares of new variables. Perhaps, in

that time it was believed that equality constraints were more convenient to deal with than inequal-

ity constraints (note, that the latter were not considered in the classics). However, today, after

several decades that inequality constraints have been included into investigation, and have become

an ordinary object, it turned out that, on the contrary, they are in a sense even more convenient

than equality constraints. We mention e.g. the de�niteness of the sign of Lagrange multipliers for
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inequality constraints, and essentially more weak, rough assumptions for them, as compared with

always rather strong, �ne assumptions for equality constraints.

Before applying conditions (1) or (2) to Problem II, let us establish a relation between the sets

of Lagrange multipliers �I and �II, and Lagrange functions �I and �II for Problems Ia and II, resp.,

the inequalities in the latter being in the form (8).

Lemma 2. There exists numbers � � � > 0 and a mapping � : �II ! [�; �] � �I such that for any

�00 2 �II and �
0 = ��00 the corresponding Lagrange functions coincide:

�II [�
00] (w) = �I [�

0] (w) 8w 2 W; hence their second variations coincide:


II [�
00] ( �w) = 
I [�

0] ( �w) 8 �w 2 W; which implies that � (�+

II
) � [�; �] � �+

I
:

The cones of critical variations in Problems Ia and II obviously coincide (because g02(w
0) = 0), so we

denote them by the same letter K.

Theorem 3 together with Theorem 1, Theorem on �nite codimensions and Lemma 2 yield the

following result for the initial problem.

Theorem 4 (A.A.Milyutin). Let w0 be a local minimum point in Problem I. Then �+ is nonempty,

and for all �w 2 K


 [�+]( �w) � 0: (9)

Proof. Take Problem I in the form of Problem Ia, and suppose �rst that g002 [w
0] is nondegenerate

in the sense of Milyutin. Take the c.c.s. cone K in the above �nite{faced form. By theorem 3 w0

is a local minimum point in Problem II. Applying Theorems 1 and 2 to Problem II, and taking into

account the nondegeneracy of g1, we get that �
+

II
is nonempty, and 
II [�

+

II
] ( �w) � 0 8 �w 2 K.

From here and Lemma 2 it follows immediately that �+

I
is nonempty, and 
I [�

+

I
] ( �w) � 0 8 �w 2 K,

q.e.d.

Suppose now that g002 [w
0] is degenerate in Milyutin's sense. In this case, as it was mentioned

above, there is a �2 2 Rq2 ; j�2j = 1; such that �2g
00

2 [w
0]( �w) = 0 on a subspace in W of a �nite

codimension. Then �2 = (� = 0; �1 = 0; �2) together with ��2, obviously belonging to �, belong

also to �+. From here we get for all w : 
 [�+] (w) � j
 [�2] (w)j � 0 , q.e.d.

Condition (9) di�ers from condition (2) only in the absence of "co". This, however, makes

condition (9) informative in the abnormal case.

Theorem 4 covers, in particular, the case of a weak minimum in optimal control problems, and,

in view of Lemma 1 and other statements of this kind, strengthens the necessary conditions from [1,

2] and some others.

Remark 1. Theorem 4 remains valid in a more general setting: actually one need not require the

equality constraint in Problem I to be �nite-dimensional; it is su�cient to require that only the

degenerate part of it is �nite-dimensional. Thus, if g = (g1; g2); where g01(w
0) is onto, and if

dim g2 <1; then Theorem 4 still holds.

Remark 2. Recently A.V.Arutyunov [10] obtained a re�nement of condition (9), in which the set

�+ is narrowed to the set of all � such that 
 [�] ( �w) � 0 on a subspace of bounded codimension,

the upper bound of codimension being dependent on the number of constraints in the problem.
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4. PONTRYAGIN MINIMUM

Let us now con�ne our consideration to optimal control problems, linear in the control, and pass

from a weak to a more strong type of minimum. On a �xed time interval [t0; t1] we consider the

control system

_x = f(x; t) + F (x; t)u; (10)

the terminal constraints

'i(x0; x1) � 0; i = 1; : : : ; �; K(x0; x1) = 0 (dimK = q); (11)

where x0 = x(t0); x1 = x(t1); and the cost functional J = '0(x0; x1)! min.

Here x 2 ACm[t0; t1]; u 2 L
r
1
[t0; t1]; x is the state variable and u is the control (of dimensions

m and r resp.), the reference point is (x0; u0):

In order to put this problem in the form of Problem I, one can take as independent variables

w = (x0; u) 2 Rm � Lr
1
, and consider x(t) to be the corresponding solution of the control system,

whence x1 = x(t1) depends on x0 and u. By this simple trick the control system is no longer a

constraint in the problem, and the only equality constraint (K = 0) is �nite-dimensional. However,

in view of Remark 1, it is not necessary to do this passage, so we still denote the above problem by

Problem I.

There may also be the nonfunctional constraint on the control u 2 U(t) (where U(t) is a convex

body, Hausdor� continuous in t), but formally we will not include it in the statement of the problem

(because this would bring an essential nonsmoothness into it), instead we will use it for the description

of the class of admissible variations, with respect to which the notion of minimum is considered.

Recall the notion of Pontryagin minimum. Let � be the set of all sequences wn = (xn; un) such

that kxn� x
0kC ! 0; kun� u

0k1 ! 0; and kunk1 � O(1): We call them Pontryagin sequences.

Definition (see [4{6]. The point w0 = (x0; u0) is called a Pontryagin minimum point (or, brie
y,

a �� minimum point) in some problem, if there are no sequence fwng 2 � such that for all n the

point wn satis�es all the constraints, and gives a lesser value to the cost functional: J(wn) < J(w0):

In other words, a �� minimum is an L1-minimum with respect to the control on any uniformly

bounded control set.

Note that the set � include, in particular, the so-called "needle-type" variations (sequences), so,

strictly speaking, the �-minimum is not a "local" minimumw.r.t. the control. Obviously, it occupies

an intermediate position between the classic weak and strong minima.

This notion, however, is not very convenient to operate with, because if we include the constraint

u 2 U in the problem, it would be too hard to keep it precisely satis�ed, while making variations of

the control. So, we also take the following notion, more convenient to work with. Denote by �(U)

the set of all sequences from �; such that un(t) 2 U(t) + vn(t); where kvnk1 ! 0: (This set

obviously possess an important property: it admits the addition of the uniformly small variations of

the control. In fact, one can consider any subset �0 � � possessing this property.)

Definition. The point w0 is called a �(U)�minimum point in the above Problem I, if there are

no sequence fwng 2 �(U) such that for all n the point wn satis�es constraints (10), (11), and

J(wn) < J(w0):

When analysing �-minimum points for problems, linear in the control, it turns out that one has

to take into account not only second variations of Lagrange functions, but also their third variations

(see details in [5{9]). Theorems 3, 4 are not su�cient to treat fully this case, because if the mapping

g002 [w
0] is degenerate, we cannot pass to Problem II, and, unlike in Theorem 4, cannot choose
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multipliers with required properties of the third variation of Lagrange function, since we have no

information about the third derivative of g2: In this case the following theorem is suggested [6, 7].

Let the initial control problem be of the form (Problem Ib):

J = '0(w)! min; 'i(w) � 0; i = 1; : : : ; �;

gk(w) = 0; k = 1; 2; 3;

where the mapping g1 is nondegenerate at w0 = (x0; u0); g02(w
0) = 0; g03(w

0) = 0; the mapping

g002 [w
0] satis�es Milyutin's nondegeneracy condition, g003 [w

0] is "totally degenerate" in Milyutin's

sense (i.e. vanishes on a subspace of �nite codimension), and the cubic mapping g0003 [w0] is nonde-

generate in a cubic sense, described below. Then the following theorem holds.

Theorem 5. Let w0 be a �(U)-minimum point in Problem Ib. Then there exists c.c.s. cone

K � �intK2 [ f0g and numbers C; � > 0 such that w0 remains a �(U)-minimum point in the

following Problem III:

J = max
i2I

'i(w) + Cjg2(w)j ! min;

g1(w) = 0; g2(w)) 2 K; jg3(w)j � � jg2(w)j:

This is a theorem on weakening the equality constraints "on the cubic level". It is proved in [6,

7] not for a general abstract problem (as Theorem 3 is), but only for optimal control problems,

linear in the control, and we don't know, whether a similar theorem is valid for another class of

problems. Theorem 5 allows one to obtain informative necessary conditions of a quadratic order for

a Pontryagin minimum in the cases when a) the control is free, or b) there is a control constraint

u 2 U(t) and the reference control u0(t) goes strictly inside int U(t): (To apply Theorem 5 for

the "exact" ��minimum, we consider a more narrow set U�(t) = u0(t) + �(U(t) � u0(t)); where

0 < � < 1; so that for any sequence from �(U�) we have un(t) 2 U(t) for n large enough, and hence

��minimum with u 2 U implies �(U�)�minimum. We apply Theorem 5 to �(U�)�minimum, and

then consider the limit as �!1:)

For any set M = f�g denote by E(M) the set of all � 2 M such that the second variation


[�]( �w) of Lagrange function �[�](w) satis�es Goh conditions (of the �rst degree), and the sum

of the second and third variations of Lagrange function satis�es the pointwise condition (15) below

with a = 0 (a new condition of Legendre type), and put E+(M) = E(M) \M+: Next one can

prove Lemma 3 that, like Lemma 2, establish a relation between the sets �I; �III, and Lagrange

functions �I; �III for Problems Ib and III, resp., with the additional property

� (E+(�III)) � [�; �] �E+(�I): (12)

This property is also valid under conditions of Lemma 2. The cones of critical variations in Problems

Ib and III again obviously coincide. The general theory [4] and Theorem on �nite codimensions allows

one to obtain the following result [7, 8].

Theorem 6. Let w0 = (x0; u0) be a �-minimum point in Problem I with the constraint u 2 U(t):

Then E+(co �) is nonempty, and for all �w 2 K


 [E+(co�)]( �w) � 0: (13)
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Like before, this condition is informative only in the normal case, when g satis�es Lyusternik con-

dition. However, due to Theorems 3 and 5 one can remove the "co" from Theorem 6, so that the

following theorem holds.

Theorem 7. Let w0 = (x0; u0) be a �-minimum point in Problem I with the constraint u 2 U(t):

Then E+(�) is nonempty, and for all �w 2 K


 [E+(�)] ( �w) � 0: (14)

Proof. We give it here for �(U�)�minimum. Suppose �rst, that we can take Problem I in the form

of Problem Ia, where g002 [w
0] satis�es Milyutin's nondegeneracy condition. In this case, with account

of property (12), the proof repeats that of Theorem 4.

Now suppose that g002 [w
0] is degenerate, and consider Problem I as Problem Ib, when g0003 [w

0] is

nondegenerate in the cubic sense. Then by Theorem 5 w0 is a �(U�)-minimum point in Problem

III. Applying Theorem 6 to Problem III, we get, due to the nondegeneracy of g1, that E
+(�III) is

nonempty, and 
III [E
+(�III)] ( �w) � 0 8 �w 2 K. From here and Lemma 3 immediately follows

that E+(�I) is nonempty, and 
I [E
+(�I)] ( �w) � 0 8 �w 2 K, q.e.d.

Finally, suppose that g0003 [w0] is degenerate in the cubic sense. Then it can be shown (see the end

of next chapter), that there is a �3 6= 0; such that �3 = (� = 0; �1 = 0; �2 = 0; �3) together with

��3 belong to E+(�I); from which inequality (14) follows trivially.

5. THE NEW LEGENDRE TYPE CONDITION

Now adduce in brief the above-mentioned pointwise condition, which, in our opinion, may present

an intrinsic interest. Fix any � and de�ne the cubic functional (we again omit the �):

�( �w) =

Z t1

t0

[�(Huxx�x; �x; �u) + 2((F 0

x�x; �u); Hxu�y)] dt;

where H(x; u; t) =  (t)(f(x; t) + F (x; t)u); and _�y = �u; �y(t0) = 0: It is shown in [6] that �( �w) is in

a sense the principal part of the third variation of Lagrange function �[�](w) at w0, the latter being

considered on any Pontryagin sequence. Replacing here �x by F (x0(t); t)�y (which, in fact, corresponds

to the use of Goh transformation, see [5{9]), we come to the following cubic functional:

e( �w) =

Z
(E(t)�y; �y; �u))dt;

where E is a tensor with smooth coe�cients. Next de�ne the functional

L(�y) =

Z
[(R(t)�y; �y) + (E(t)�y; �y; �u)] dt;

where R is the matrix (R1) from the second variation (7) of Lagrange function. We call it Legendre

part of Lagrange function.

Now �x an arbitrary t�, and consider L(�y) with the coe�cients, frozen at t� (omitting the bars):

L [t�](y) =

Z
[(R(t�)y; y) + (E(t�)y; y; u)] dt:

8



The above-mentioned condition, that makes the selection � toE(M); is: for any t� and any absolutely

continuous function y(t), such that _y = u 2 U(t�); and y(t0) = y(t1) = 0; the following inequality

holds:

L[t�](y) � a

Z
(y; y) dt; (15)

where a = 0 for necessary conditions and a > 0 for su�cient ones. Observe, that this condition

involves not only the second variation of Lagrange function (as usual), but also its third variation

and the admissible control set U(t); frozen at t�: Condition (15) is to be veri�ed at each point t�
separately, and because of this we call it a condition of Legendre type. However, for each t� it leads

to an auxiliary optimal control problem: to �nd the maximal a for which inequality (15) holds true

for all y(t): This auxiliary problem is rather nontrivial, and has intrinsic interest; see more about it

in [8, 9].

The cubic nondegeneracy condition. The mapping g : Rm�Lr
1
! Rq; (x0; u)! K(xo; x1);

where x1 = x(t1) is the endpoint of the solution to (11), can be shown to possess the following

expansion at w0 = (x00; u
0) [6, 7]:

g(w0 + �w) = g(w0) + g0(w0) �w +
1

2
g00[w0]( �w) +

Z
(Eg(t)�y; �y; �u) dt+ �( �w);

where Eg is a q�dimensional r � r � r-tensor, and �( �wn)! 0 for any Pontryagin sequence �wn:

De�ne the q�dimensional di�erential 1-form:

!(t) = (Eg(t)y; y; dy);

where t is regarded as a parameter.

We say that g is cubic degenerate at w0; if there exists a nonzero b 2 Rq; such that the scalar

di�erential 1-form (b; !(t)) = (b; Eg(t)y; y; dy)) for all t is closed: d(b; !(t)) = 0; the di�erential

being taken w.r.t. y: If there is no such b; we say that g is cubic nondegenerate at w0: In the

degenerate case for any t� and for any cycle y(t) obviously
R
b(E(t�)y(t); y(t); u(t)) dt = 0; hence

only the �rst term remains in L[t�]: If in addition, g00[w0] is "totally degenerate" in Milyutin's

sense (i.e. vanishes on a subspace of �nite codimension), hence b g00[w0]( �w) = 0 on this subspace

too, and then for � = (� = 0; � = b) and �� the second variation 
[�]( �w) = �b g00[w0]( �w)

satis�es Goh conditions, whence R(t) = 0: (Recall that in our problem 
[�] has the form (4) with

R0(t) = 0; and Goh conditions mean that V1(t) = 0 and R1(t) � 0:) Thus, for this �; for any t�
we get L[t�](y) � 0; so condition (15) holds trivially with a = 0: We apply these considerations to

the mapping g3 in the proof of Theorem 7.

6. SUFFICIENT CONDITIONS

In conclusion, we brie
y touch on the question of su�cient conditions. This is a matter of a quite

di�erent character. The main di�culty here is not the degeneracy of the equality constraints, but

the search for a proper "order of estimation", i.e. a positive functional 
( �w); regarding to which

all the functionals in the problem can be taken into account. A proper order of estimation (usually

quadratic one, but this is not necessary) allows one to obtain su�cient conditions for a local minimum

that are close to necessary ones. This means that, replacing the nonstrict inequalities in Theorems

1, 2, 4, 6, 7 ( sup
[�]( �w) � 0) by the estimates: sup 
[�]( �w) � a
( �w); with a > 0, one gets the

corresponding su�cient conditions. (However, the proof of this is not trivial, see e.g. [4, 6]). These

su�cient conditions, as it can easily be understood, are informative regardless of the degeneracy or

nondegeneracy of the equality constraints.
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A general theory of such "adjoint pairs" of necessary and su�cient conditions was developed by

A.A.Milyutin and his co-workers in [4]. The order 
( �w) turns out to be speci�c for every speci�c

class of problems. For the general nonlinear control problem it contains the integral of the square of

the control variation (see [4]):


0 ( �w) = j�x(t0))j
2 +

Z
j�u(t)j2 dt;

but for problems linear in the control this order is obviously too rough. For this class the proper

order is:


 ( �w) = j�x(t0)j
2 + j�y(t1)j

2 +

Z
j�y(t)j2 dt; (16)

_�y = �u; �y(t0) = 0;

which, as one can observe, contains (in addition to endpoint terms) only the integral of the squares

of state variables ([5{9]).

The described approach allows one to obtain, in particular, su�cient conditions of the order (16)

for a minimality of abnormal geodesics in the sub-Riemannian geometry. This will be presented in

the nearest papers of the author.
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